×

What are causes of cash flow bullwhip effect in centralized and decentralized supply chains? (English) Zbl 1443.90029

Summary: Bullwhip effect in supply chain is a phenomenon which can emerge in both inventory levels and replenishment orders. Bullwhip effect causes variations in cash conversion cycle (CCC) across cash flow of supply chain. As a result, it can lead to inefficiencies such as cash flow bullwhip (CFB). Due to negative impact of CFB on cash flow of supply chain, it can lead to a decrease in efficiency of supply chain management (SCM). That is why supply chain modeling is a proper start point for effective management and control of the CFB. This paper aims to analyze concurrent impact of causes of inventory bullwhip effect and effect of their interactions on CFB based on generalized OUT policy from aspect of CCC variance. To this end, first we develop system dynamics structure of beer distribution game as simulation model which includes multi-stage supply chain under both centralized and decentralized supply chains. Then, in order to develop CFB function, we design experiments in developed simulation model using response surface methodology (RSM). Results demonstrate that if each chain member uses generalized OUT policy as replenishment model, there still exists CFB in both chains and CFB largely stems from rationing and shortage gaming in both centralized and decentralized supply chain. In addition, when information on ordering parameters are not shared among members, parameters of downstream stage (i.e. retailer) are more important than parameters of upstream stage (i.e. manufacturer) in reducing CFB function.

MSC:

90-10 Mathematical modeling or simulation for problems pertaining to operations research and mathematical programming
90B05 Inventory, storage, reservoirs

Software:

DYNAMO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, C.; Liu, S., ‘A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment’, Appl. Math. Model., 37, 3, 707-718 (2013) · Zbl 1351.90028
[2] Chopra, S.; Meindl, P., Supply Chain Management, Strategy, Planning and Operation. (2001), NJ: Prentice Hall: NJ: Prentice Hall Upper Saddle River
[3] Lee, H. L.; Padmanabhan, V.; Whang, S., ‘Information distortion in a supply chain: The bullwhip effect’, Manag. Sci., 43, 4, 546-558 (1997) · Zbl 0888.90047
[4] Baganha, M. P.; Cohen, M. A., The stabilizing effect of inventory in supply chains, Oper. Res., 46, S3, 72-83 (1998) · Zbl 0987.90003
[5] Kahn, J. A., ‘Inventories and the volatility of production’, Am. Econ. Rev., 77, 667-679 (1987)
[6] Lee, H. L.; Padmanabhan, V.; Whang, S., ‘The bullwhip effect in supply chains’, Sloan Manag. Rev., 38, 93-102 (1997)
[7] Metters, R., ‘Quantifying the bullwhip effect in supply chains’, J. Oper. Manag., 15, 2, 89-100 (1997)
[8] Disney, S. M.; Farasyn, I.; Lambrecht, M. R.; Towill, D. R.; Velde, W. V.D., ‘Controlling bullwhip and inventory variability with the golden smoothing rule’, Eur. J. Ind. Eng., 1, 241-265 (2007)
[9] Chen, F.; Drezner, Z.; Ryan, J. K.; Simchi-Levi, D., The Bullwhip effect: Managerial Insights On the Impact of Forecasting and Information On Variability in a Supply Chain (1998), Springer: Springer USA
[10] Dominguez, R.; Cannella, S.; Framinan, J. M., ‘The impact of the supply chain structure on bullwhip effect’, Appl. Math. Model., 39, 23, 7309-7325 (2015) · Zbl 1443.90021
[11] Li, C., ‘Controlling the bullwhip effect in a supply chain system with constrained information flows’, Appl. Math. Model., 37, 4, 1897-1909 (2013) · Zbl 1349.90101
[12] Chen, F.; Drezner, Z.; Ryan, J. K.; Simchi-Levi, D., ‘Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information’, Manag. Sci., 46, 3, 436-443 (2000) · Zbl 1231.90019
[13] Tangsucheeva, R.; Prabhu, V., ‘Modeling and Analysis of Cash-Flow Bullwhip in Supply Chain’, Int. J. Prod. Econ., 145, 1, 431-447 (2013)
[14] Stewart, G., ‘Supply chain performance benchmarking study reveals keys to supply chain excellence’, Logist. Inf. Manag., 8, 2, 38-45 (1995)
[15] Tsai, C. Y., ‘On supply chain cash flow risks’, Decis. Support Syst., 44, 1031-1042 (2008)
[16] Min, H.; Zhou, G., ‘Supply chain modeling: past, present and future’, Comput. Ind. Eng., 43, 1-2, 231-249 (2002)
[17] Wang, X.; Disney, S. M., ‘The bullwhip effect: Progress, trends and directions’, Eur. J Oper Res, 250, 3, 691-701 (2016) · Zbl 1346.90061
[18] Kleijnen, J. P.C., ‘Supply chain simulation tools and techniques: a survey’, Int. J. Simul. Process Model., 1, 1-2, 82-89 (2005)
[19] Adenso-Diaz, B.; Moreno, P.; Gutiérrez, E.; Lozano, S., An analysis of the main factors affecting bullwhip in reverse supply chains, Int. J. Prod Econ., 135, 2, 917-928 (2012)
[20] Sterman, J. D., ‘Misperceptions of feedback in dynamic decision making’, Organ. Behav. Human Decis. Process., 43, 3, 301-335 (1989)
[21] Montgomery, D. C., Introduction to Statistical Quality Control (2009), John Wiley & Sons,: John Wiley & Sons, New York, NY · Zbl 1274.62015
[22] Box, G. E.P.; Wilson, K. B., ‘On the experimental attainment of optimum conditions’, J. R. Stat. Soc.: Ser. B (Methodol.), 13, 1, 1-45 (1951) · Zbl 0043.34402
[23] Cannella, S., ‘Order-Up-To policies in information exchange supply chains’, Appl. Math. Model., 38, 5553-5561 (2014) · Zbl 1428.90007
[24] Forrester, J. W., Industrial Dynamics (1961), MIT Technology Press: MIT Technology Press USA
[25] Forrester, J. W., ‘Industrial Dynamics, A major breakthrough for decision makers’, Harv. Bus. Rev., 67-96 (1958)
[26] Jones, R. M.; Towill, D. R., Coping with uncertainty: reducing “bullwhip” behavior in global supply chains’, Supp. Chain Forum: Int. J., 1, 1, 40-45 (2000)
[27] Geary, S.; Disney, S. M.; Towill, D. R., ‘On bullwhip in supply chains- historical review, present practice and expected future impact’, Int. J. Prod. Econ., 101, 1, 2-18 (2006)
[28] Hassanzadeh, A.; Jafarian, A.; Amiri, M., ‘Modelling and analysis of the causes of bullwhip effect in centralized and decentralized supply chain using response surface method’, Appl. Math. Model., 38, 9-10, 2353-2365 (2013) · Zbl 1427.90014
[29] Holweg, M.; Bicheno, J., Supply chain simulation - a tool for education, enhancement and endeavor’, Int. J. Prod. Econ., 78, 2, 163-175 (2002)
[30] Hieber, R.; Hartel, I., ‘Impacts of SCM order strategies evaluated by simulation-based ‘Beer Game’ Approach: the model, concept, and initial experiences’, Prod. Plan. Control, 14, 2, 122-134 (2003)
[31] Cannella, S.; Barbosa-Povoa, A. P.; Framinan, J. M.; Relvas, S., ‘Metrics for bullwhip effect analysis’, J. Oper. Res. Soc., 64, 1-16 (2013)
[32] Paik, S-K.; Bagchi, P. K., ‘Understanding the causes of the bullwhip effect in a supply chain’, Int. J. Retail Distrib. Manag., 35, 4, 308-324 (2007)
[33] Ciancimino, E.; Cannella, S.; Bruccoleri, M.; Framinan, J. M., ‘Production, manufacturing and logistics on the bullwhip avoidance phase: The synchronised supply chain’, Eur. J. Oper. Res., 221, 49-63 (2012) · Zbl 1253.90023
[34] Turrisi, M.; Bruccoleri, M.; Cannella, S., ‘Impact of reverse logistics on supply chain performance’, Int. J. Phys. Distrib. Logist. Manag, 43, 7, 564-585 (2013)
[35] Cannella, S.; Ashayeri, J.; Miranda, P. A.; Bruccoleri, M., ‘Current economic downturn and supply chain: the significance of demand and inventory smoothing’, Int. J. Comput. Integ. Manuf., 27, 3, 201-212 (2014)
[36] Dejonckheere, J.; Disney, S. M.; Lambrecht, M. R.; Towill, D. R., ‘Measuring and avoiding the bullwhip effect: A control theoretic approach’, Eur. J. Oper. Res., 147, 3, 567-590 (2003) · Zbl 1026.90030
[37] Jaipuria, S.; Mahapatra, S. S., ‘An improved demand forecasting method to reduce bullwhip effect in supply chains’, Expert Systems with Applications’, Expert Syst. Appl., 41, 2395-2408 (2014)
[38] Akkermans, H.; Voss, C., The service bullwhip effect, Int. J. Oper. Prod. Manag., 33, 6, 765-788 (2013)
[39] Trapero, J. R.; Kourentzes, N.; Fildes, R., ‘Impact of information exchange on supplier forecasting performance’, Omega, 40, 738-747 (2012)
[40] Li, G.; Yang, H.; Sun, L.; Ji, P.; Feng, L., ‘The evolutionary complexity of complex adaptive supply networks: A simulation and case study’, Int. J. Prod. Econ., 124, 2, 310-330 (2010)
[41] Surana, A.; Kumara, S.; Greaves, M.; Raghavan, U. N., ‘Supply-chain networks: A complex adaptive systems perspective’, Int. J. Prod. Res, 43, 20, 4235-4265 (2005)
[42] Long, Q.; Lin, J.; Sun, Z., ‘Modeling and distributed simulation of supply chain with a multi-agent platform’, Int. J. Adv. Manuf. Technol., 55, 9, 1241-1252 (2011)
[43] Chan, F. T.S.; Prakash, A., ‘Inventory management in a lateral collaborative manufacturing supply chain: a simulation study’, Int. J Prod. Res., 50, 16, 4670-4685 (2012)
[44] Silver, E. A.; Pyke, D. F.; Peterson, R., Inventory Management and Production Planning and Scheduling (1998), John Wiley & Sons: John Wiley & Sons New York, NY
[45] Zipkin, P. H., Foundations of Inventory Management (2000), McGraw-Hill: McGraw-Hill New York, NY · Zbl 1370.90005
[46] Kim, J. G.; Chatfield, D.; Harrison, T. P.; Hayya, J. C., ‘Quantifying the bullwhip effect in a supply chain with stochastic lead time’, Eur. J. Oper. Res., 173, 617-636 (2006) · Zbl 1125.90363
[47] Peterson, W. D.; Eberlein, L. R., ‘Reality check: A bridge between systems thinking and system dynamics’, Syst. Dyn. Rev, 10, 2‐3, 159-174 (2006)
[48] Draper, N. R.; Lin, D. K.J., ‘Small response-surface designs’, Technometrics, 32, 2, 187-194 (1990)
[49] Draper, N. R.; John, J. A., Response-surface designs for quantitative and qualitative variables’, Technometrics, 30, 4, 423-428 (1988)
[50] Montgomery, D. C.; Myers, R. H., Response Surface methodology: Process and Product Optimization Using Designed Experiments (2002), John Wiley & Sons: John Wiley & Sons New York, NY · Zbl 1161.62393
[51] Prapulla, S. G.; Jacob, Z.; Chand, N.; Rajalakshmi, D.; Karanth, N. G., ‘Maximization of lipid production by Rhodotorula gracilis CFR-1 using response surface methodology’, Biotechnol. Bioeng., 40, 965-970 (1992)
[52] Myers, R. H.; Montgomery, D. C.; Anderson-Cook, C. M., Response Surface methodology: Process and Product Optimization Using Designed Experiments (2009), John Wiley & Sons: John Wiley & Sons New York, NY · Zbl 1269.62066
[53] Neter, J., Applied Linear Statistical Methods (1996), McGraw-Hill/Irwin: McGraw-Hill/Irwin USA
[54] Ismail, A.; Linder, M.; Ghoul, M., ‘Optimization of butylgalactoside synthesis by β-galactosidase from Aspergillus oryzae, Enzyme Microb. Technol., 25, 3, 208-213 (1999)
[55] Strobel, R. J.; Sullivan, G. R., Experimental design for improvement of fermentation, (Demain, AL; Davies, JE, Manual of Industrial Microbiology and biotechnology, Section I: Cultures (1999), ASM Press: ASM Press Washington, DC), 80-93
[56] Montgomery, D. C., Design and Analysis of Experiments (2005), John Wiley & Sons: John Wiley & Sons New York, NY · Zbl 1195.62128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.