×

Constructing new ample divisors out of old ones. (English) Zbl 0961.14005

The author studies the ample cone of surfaces \(S\) obtained by blowing-up \(\mathbb{P}^2\) at \(k\) distinct points \(p_1,\dots,p_k\). A vector \((d;m_1, \dots, m_k)\in \mathbb{Z}_+ \times \mathbb{Z}^k_{\geq 0}\) is said to be ample (respectively nef) if there exists a surface \(S\) as above such that \(\pi^*{\mathcal O}_{\mathbb{P}^2} (d)-\sum^k_{j=1} m_jE_j\) is ample (respectively nef), where \(\pi\) is the blow-up and \(E_j=\pi^{-1}(p_j)\), \(j=1,\dots,k\). The following gluing theorem is proved. Let \((d;m_1, \dots, m_k,m)\) be an ample (respectively nef) vector and let \((m; \alpha_1, \dots,\alpha_n) \in\mathbb{Z}_+^{n+1}\) be a nef vector; then \((d;m_1, \dots, m_k,\alpha_1, \dots, \alpha_n)\) is ample (respectively nef).
This theorem, combined with the action of the Cremona group on the ample cone gives rise to an algorithmic procedure for detecting new ample classes in the Picard group of rational surfaces. Moreover the author associates a Seshadri-like constant \({\mathcal R}_k({\mathcal L})\), called remainder, to any ample line bundle \({\mathcal L}\) and the integer \(k\). These constants, which are invariant under rescaling of \({\mathcal L}\), allow him to rephrase a classical conjecture of Nagata on the ampleness of \(\pi^* {\mathcal O}_{\mathbb{P}^2} (d)-m\sum^k_{j=1} E_j\) in the following very simple way:
\({\mathcal R}_k ({\mathcal O}_{\mathbb{P}^2} (1))=0\) for every \(k\geq 9\).
By using the algorithm above the author establishes several results towards Nagata’s conjecture and proposes a weaker conjecture on the bound of \({\mathcal R}_k({\mathcal O}_{\mathbb{P}^2}(1))\) in terms of continued fractions approximations of \(\sqrt k\). He also generalizes related results by Geng Xu [Manuscr. Math. 86, No. 2, 195-197 (1995; Zbl 0836.14004)] and O. Küchle [Math. Ann. 304, 151-155 (1996; Zbl 0834.14024)]. In a final section the meaning of the remainders \({\mathcal R}_k({\mathcal L})\) is explained in terms of volume of a symplectic manifold and the part of it which can be filled by a packing of \(k\) balls.

MSC:

14C20 Divisors, linear systems, invertible sheaves
14J26 Rational and ruled surfaces
14E07 Birational automorphisms, Cremona group and generalizations
14Q15 Computational aspects of higher-dimensional varieties
14C22 Picard groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Flavio Angelini, Ample divisors on the blow up of \(\mathbf P^ 3\) at points , Manuscripta Math. 93 (1997), no. 1, 39-48. · Zbl 0906.14003 · doi:10.1007/BF02677456
[2] V. I. Arnold and A. B. Givental, “Symplectic geometry” , Dynamical Systems 6, Encyclopaedia of Math. Sci., vol. 4, Springer-Verlag, Berlin, 1990, pp. 1-136. · Zbl 0778.00008
[3] P. Biran, Symplectic packing in dimension \(4\) , Geom. Funct. Anal. 7 (1997), no. 3, 420-437. · Zbl 0892.53022 · doi:10.1007/s000390050014
[4] P. Biran, A stability property of symplectic packing , preprint, 1998. · Zbl 0930.53052 · doi:10.1007/s002220050306
[5] Ciro Ciliberto and Rick Miranda, Degenerations of planar linear systems , J. Reine Angew. Math. 501 (1998), 191-220. · Zbl 0943.14002
[6] Jean-Pierre Demailly, \(L^ 2\) vanishing theorems for positive line bundles and adjunction theory , Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1-97. · Zbl 0883.14005 · doi:10.1007/BFb0094302
[7] M. Demazure, “Surfaces de del Pezzo II-V” , Séminaire sur les singularités de surfaces (1976-1977), Lecture Notes in Math., vol. 777, Springer-Verlag, Berlin, 1980, pp. 21-69. · Zbl 0415.00010 · doi:10.1007/BFb0085872
[8] Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions , Astérisque (1988), no. 165, 210 pp. (1989), Soc. Math. France, Montrouge. · Zbl 0685.14029
[9] Lawrence Ein, Oliver Küchle, and Robert Lazarsfeld, Local positivity of ample line bundles , J. Differential Geom. 42 (1995), no. 2, 193-219. · Zbl 0866.14004
[10] Lawrence Ein and Robert Lazarsfeld, Seshadri constants on smooth surfaces , Astérisque (1993), no. 218, 177-186, in Journées de géométrie algébrique d’Orsay. · Zbl 0812.14027
[11] R. Friedman and J. Morgan, On the diffeomorphism types of certain algebraic surfaces, I , J. Differential Geom. 27 (1988), 297-369. · Zbl 0669.57016
[12] Robert E. Gompf, A new construction of symplectic manifolds , Ann. of Math. (2) 142 (1995), no. 3, 527-595. JSTOR: · Zbl 0849.53027 · doi:10.2307/2118554
[13] Robin Hartshorne, Ample subvarieties of algebraic varieties , Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. · Zbl 0208.48901 · doi:10.1007/BFb0067839
[14] Robin Hartshorne, Algebraic geometry , Springer-Verlag, New York, 1977, Grad. Texts in Math., 52. · Zbl 0367.14001
[15] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory , Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990, 2d ed. · Zbl 0712.11001
[16] Oliver Küchle, Ample line bundles on blown up surfaces , Math. Ann. 304 (1996), no. 1, 151-155. · Zbl 0834.14024 · doi:10.1007/BF01446289
[17] Robert Lazarsfeld, Lengths of periods and Seshadri constants of abelian varieties , Math. Res. Lett. 3 (1996), no. 4, 439-447. · Zbl 0890.14025 · doi:10.4310/MRL.1996.v3.n4.a1
[18] Dusa McDuff, Blow ups and symplectic embeddings in dimension \(4\) , Topology 30 (1991), no. 3, 409-421. · Zbl 0731.53035 · doi:10.1016/0040-9383(91)90021-U
[19] Dusa McDuff and Leonid Polterovich, Symplectic packings and algebraic geometry , Invent. Math. 115 (1994), no. 3, 405-434. · Zbl 0833.53028 · doi:10.1007/BF01231766
[20] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology , Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995. · Zbl 0844.58029
[21] M. Nagata, Lectures on the fourteenth problem of Hilbert , Tata Institute of Fundamental Research, Bombay, 1965. · Zbl 0182.54101
[22] Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers , John Wiley & Sons, New York-Chichester-Brisbane, 1980. · Zbl 0431.10001
[23] Z. Ran, Enumerative geometry of singular plane curves , Invent. Math. 97 (1989), no. 3, 447-465. · Zbl 0702.14040 · doi:10.1007/BF01388886
[24] Eugenii Shustin, Gluing of singular and critical points , Topology 37 (1998), no. 1, 195-217. · Zbl 0905.14008 · doi:10.1016/S0040-9383(97)00008-6
[25] E. Shustin and I. Tyomkin, A note on Nagata’s counterexample to Hilbert’s fourteenth problem , preprint, 1994.
[26] A. J. van der Poorten, “An introduction to continued fractions” , Diophantine analysis, London Math. Soc. Lecture Note Ser., vol. 109, Cambridge Univ. Press, Cambridge, 1986, pp. 99-138. · Zbl 0583.00005
[27] O. Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees \(6\) and \(7\) , Topology (Leningrad, 1982), Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187-200. · Zbl 0576.14031
[28] Geng Xu, Curves in \(\mathbf P^ 2\) and symplectic packings , Math. Ann. 299 (1994), no. 4, 609-613. · Zbl 0805.53033 · doi:10.1007/BF01459801
[29] Geng Xu, Divisors on the blow-up of the projective plane , Manuscripta Math. 86 (1995), no. 2, 195-197. · Zbl 0836.14004 · doi:10.1007/BF02567988
[30] Geng Xu, Ample line bundles on smooth surfaces , J. Reine Angew. Math. 469 (1995), 199-209. · Zbl 0833.14028 · doi:10.1515/crll.1995.469.199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.