×

Generalized ESO and predictive control based robust autopilot design. (English) Zbl 1346.93136

Summary: A novel continuous time predictive control and Generalized Extended State Observer (GESO) based acceleration tracking pitch autopilot design is proposed for a tail controlled, skid-to-turn tactical missile. As the dynamics of missile are significantly uncertain with mismatched uncertainty, GESO is employed to estimate the state and uncertainty in an integrated manner. The estimates are used to meet the requirement of state and to robustify the output tracking predictive controller designed for nominal system. Closed-loop stability for the controller-observer structure is established. An important feature of the proposed design is that it does not require any specific information about the uncertainty. Also the predictive control design yields the feedback control gain and disturbance compensation gain simultaneously. Effectiveness of GESO in estimation of the states and uncertainties and in robustifying the predictive controller in the presence of parametric uncertainties, external disturbances, unmodeled dynamics, and measurement noise is illustrated by simulation.

MSC:

93B35 Sensitivity (robustness)
93B07 Observability
93C95 Application models in control theory
93E10 Estimation and detection in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Garnell, P., Guided Weapon Control Systems (1980), Oxford, UK: Pergamon Press, Oxford, UK
[2] Horton, M. P., Autopilots for tactical missiles: an overview, Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 209, 2, 127-139 (1995) · doi:10.1243/pime_proc_1995_209_373_02
[3] Zarchan, P., Tactical and Strategic Missile Guidance. Tactical and Strategic Missile Guidance, Progress in Astronautics and Aeronautics, 199 (2002), Reston, Va, USA: American Institute of Aeronautics and Astronautics, Reston, Va, USA
[4] Nichols, R. A.; Reichert, R. T.; Rugh, W. J., Gain scheduling for H-infinity controllers: a flight control example, IEEE Transactions on Control Systems Technology, 1, 2, 69-78 (1993) · doi:10.1109/87.238400
[5] Reichert, R. T., Robust autopilot design using \(μ\)-synthesis, Proceedings of the American Control Conference
[6] Bennani, S.; Willemsen, D. M. C.; Scherer, C. W., Robust control of linear parametrically varying systems with bounded rates, Journal of Guidance, Control, and Dynamics, 21, 6, 916-922 (1998) · doi:10.2514/2.4325
[7] Mehrabian, A. R.; Roshanian, J., Skid-to-turn missile autopilot design using scheduled eigenstructure assignment technique, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 220, 3, 225-239 (2006) · doi:10.1243/09544100g03204
[8] Benshabat, D. G.; Chait, Y., Application of quantitative feedback theory to a class of missiles, Journal of Guidance, Control, and Dynamics, 16, 1, 47-52 (1993) · doi:10.2514/3.11426
[9] Zhu, J. J.; Mickle, M. C., Missile autopilot design using a new linear time-varying control technique, Journal of Guidance, Control, and Dynamics, 20, 1, 150-157 (1997) · Zbl 0925.93737 · doi:10.2514/2.4009
[10] Tahk, M.; Briggs, M. M.; Menon, P. K. A., Applications of plant inversion via state feedback to missile autopilot design, Proceedings of the 27th IEEE Conference on Decision and Control
[11] Upreti, V.; Talole, S. E.; Phadke, S. B., Predictive estimation and control based missile autopilot design, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA ’04) · doi:10.2514/6.2004-5331
[12] Chwa, D.; Choi, J. Y., Observer-based control for tail-controlled skid-to-turn missiles using a parametric affine model, IEEE Transactions on Control Systems Technology, 12, 1, 167-175 (2004) · doi:10.1109/tcst.2003.821954
[13] Li, T.; Zhang, S.; Yang, H.; Zhang, Y.; Zhang, L., Robust missile longitudinal autopilot design based on equivalent-input-disturbance and generalized extended state observer approach, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229, 6, 1025-1042 (2015) · doi:10.1177/0954410014543715
[14] Kim, S.-H.; Kim, Y.-S.; Song, C., A robust adaptive nonlinear control approach to missile autopilot design, Control Engineering Practice, 12, 2, 149-154 (2004) · doi:10.1016/S0967-0661(03)00016-9
[15] Chen, W.-H., Nonlinear disturbance observer-enhanced dynamic inversion control of missiles, Journal of Guidance, Control, and Dynamics, 26, 1, 161-166 (2003) · doi:10.2514/2.5027
[16] Calise, A. J.; Sharma, M.; Corban, J. E., Adaptive autopilot design for guided munitions, Journal of Guidance, Control, and Dynamics, 23, 5, 837-843 (2000) · doi:10.2514/2.4612
[17] Godbole, A. A.; Libin, T. R.; Talole, S. E., Extended state observer-based robust pitch autopilot design for tactical missiles, Proceedings of the Institution of Mechanical Engineers, Part G, 226, 12, 1482-1501 (2012) · doi:10.1177/0954410011426397
[18] Lu, P., Nonlinear predictive controllers for continuous systems, Journal of Guidance, Control, and Dynamics, 17, 3, 553-560 (1994) · Zbl 0809.93016 · doi:10.2514/3.21233
[19] Lu, P., Optimal predictive control of continuous nonlinear systems, International Journal of Control, 62, 3, 633-649 (1995) · Zbl 0830.93028 · doi:10.1080/00207179508921561
[20] Li, S.; Yang, J.; Chen, W.-H.; Chen, X., Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Transactions on Industrial Electronics, 59, 12, 4792-4802 (2012) · doi:10.1109/tie.2011.2182011
[21] Li, S.; Yang, J.; Chen, W.-H.; Chen, X., Disturbance Observer-Based Control: Methods and Applications (2014), Boca Raton, Fla, USA: CRC Press, Boca Raton, Fla, USA
[22] Lu, P.; Pierson, B. L., Aircraft terrain following based on a nonlinear continuous predictive control approach, Journal of Guidance, Control, and Dynamics, 18, 4, 817-823 (1995) · doi:10.2514/3.21464
[23] Lu, P., Entry guidance and trajectory control for reusable launch vehicle, Journal of Guidance, Control, and Dynamics, 20, 1, 143-149 (1997) · Zbl 0925.93736 · doi:10.2514/2.4008
[24] Singh, S. N.; Steinberg, M.; DiGirolamo, R. D., Nonlinear predictive control of feedback linearizable systems and flight control system design, Journal of Guidance, Control, and Dynamics, 18, 5, 1023-1028 (1995) · Zbl 0850.93624 · doi:10.2514/3.21500
[25] Talole, S. E.; Banavar, R. N., Proportional navigation through predictive control, Journal of Guidance, Control, and Dynamics, 21, 6, 1004-1006 (1998) · doi:10.2514/2.4339
[26] Talole, S. E.; Phadke, S. B.; Singh, R. K., Predictive homing guidance using time delay control, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit
[27] Hull, R. A.; Schumacher, D.; Qu, Z., Design and evaluation of robust nonlinear missile autopilots from a performance perspective, Proceedings of the American Control Conference
[28] Panchal, B.; Kolhe, J. P.; Talole, S. E., Robust predictive control of a class of nonlinear systems, Journal of Guidance, Control, and Dynamics, 37, 5, 1437-1445 (2014) · doi:10.2514/1.g000694
[29] Takahashi, R. H. C.; Peres, P. L. D., Unknown input observers for uncertain systems: a unifying approach, European Journal of Control, 5, 2-4, 261-275 (1999) · Zbl 1093.93507 · doi:10.1016/s0947-3580(99)70161-5
[30] Schrijver, E.; van Dijk, J., Disturbance observers for rigid mechanical systems: equivalence, stability, and design, Journal of Dynamic Systems, Measurement, and Control, 124, 4, 539-548 (2002) · doi:10.1115/1.1513570
[31] Talole, S. E.; Benito, J.; Mease, K. D., Sliding mode observer for drag tracking in entry guidance, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit · doi:10.2514/6.2007-6851
[32] She, J.-H.; Fang, M.; Ohyama, Y.; Hashimoto, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Transactions on Industrial Electronics, 55, 1, 380-389 (2008) · doi:10.1109/TIE.2007.905976
[33] Youcef-Toumi, K.; Ito, O., A time delay controller for systems with unknown dynamics, Journal of Dynamic Systems, Measurement and Control, 112, 1, 133-142 (1990) · Zbl 0709.93035 · doi:10.1115/1.2894130
[34] Zhong, Q.-C.; Rees, D., Control of uncertain LTI systems based on an uncertainty and disturbance estimator, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 126, 4, 905-910 (2004) · doi:10.1115/1.1850529
[35] Talole, S. E.; Singh, N. K.; Phadke, S. B., Robust input-output linearization using UDE, Proceedings of the International Conference on Advances in Control and Optimization of Dynamical Systems (ACODS ’07)
[36] Han, J., From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics, 56, 3, 900-906 (2009) · doi:10.1109/TIE.2008.2011621
[37] Wang, W.; Gao, Z., A comparison study of advanced state observer design techniques, Proceedings of the American Control Conference
[38] Gao, Z.; Huang, Y.; Han, J., An alternative paradigm for control system design, Proceedings of the 40th IEEE Conference on Decision and Control (CDC ’01) · doi:10.1109/.2001.980926
[39] Godbole, A. A.; Kolhe, J. P.; Talole, S. E., Performance analysis of generalized extended state observer in tackling sinusoidal disturbances, IEEE Transactions on Control Systems Technology, 21, 6, 2212-2223 (2013) · doi:10.1109/TCST.2012.2231512
[40] Yao, J.; Jiao, Z.; Ma, D., Adaptive robust control of dc motors with extended state observer, IEEE Transactions on Industrial Electronics, 61, 7, 3630-3637 (2014) · doi:10.1109/TIE.2013.2281165
[41] Li, S.; Liu, Z., Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia, IEEE Transactions on Industrial Electronics, 56, 8, 3050-3059 (2009) · doi:10.1109/TIE.2009.2024655
[42] Xia, Y.; Zhu, Z.; Fu, M.; Wang, S., Attitude tracking of rigid spacecraft with bounded disturbances, IEEE Transactions on Industrial Electronics, 58, 2, 647-659 (2011) · doi:10.1109/TIE.2010.2046611
[43] Talole, S. E.; Kolhe, J. P.; Phadke, S. B., Extended-state-observer-based control of flexible-joint system with experimental validation, IEEE Transactions on Industrial Electronics, 57, 4, 1411-1419 (2010) · doi:10.1109/tie.2009.2029528
[44] Yao, J.; Jiao, Z.; Ma, D., Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping, IEEE Transactions on Industrial Electronics, 61, 11, 6285-6293 (2014) · doi:10.1109/TIE.2014.2304912
[45] Zhu, Z.; Xu, D.; Liu, J.; Xia, Y., Missile guidance law based on extended state observer, IEEE Transactions on Industrial Electronics, 60, 12, 5882-5891 (2013) · doi:10.1109/TIE.2012.2232254
[46] Talole, S. E.; Godbole, A. A.; Kolhe, J. P.; Phadke, S. B., Robust roll autopilot design for tactical missiles, Journal of Guidance, Control, and Dynamics, 34, 1, 107-117 (2011) · doi:10.2514/1.50555
[47] Gurfil, P., Zero-miss-distance guidance law based on line-of-sight rate measurement only, Control Engineering Practice, 11, 7, 819-832 (2003) · doi:10.1016/S0967-0661(02)00208-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.