×

Weighted Lupaş \(q\)-Bézier curves. (English) Zbl 1346.65005

Summary: This paper is concerned with a new generalization of rational Bernstein-Bézier curves involving \(q\)-integers as shape parameters. A one parameter family of rational Bernstein-Bézier curves, weighted Lupaş \(q\)-Bézier curves, is constructed based on a set of Lupaş \(q\)-analogue of Bernstein functions which is proved to be a normalized totally positive basis. The generalized rational Bézier curve is investigated from a geometric point of view. The investigation provides the geometric meaning of the weights and the representation for conic sections. We also obtain degree evaluation and de Casteljau algorithms by means of homogeneous coordinates. Numerical examples show that weighted Lupaş \(q\)-Bézier curves have more modeling flexibility than classical rational Bernstein-Bézier curves and Lupaş \(q\)-Bézier curves, and meanwhile they provide better approximations to the control polygon than rational Phillips \(q\)-Bézier curves.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Goodman, T. N.T., Shape preserving representations, (Lyche, T.; Schumaker, L. L., Mathematical Methods in CAGD (1989), Academic Press: Academic Press Boston, MA), 333-357 · Zbl 0693.41027
[2] Carnicer, J. M.; Peña, J. M., Totally positive bases for shape preserving curve design and optimality of B-splines, Comput. Aided Geom. Design, 11, 6, 633-654 (1994) · Zbl 0827.65018
[3] Carnicer, J. M.; Peña, J. M., Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math., 1, 2, 173-196 (1993) · Zbl 0832.41013
[4] Carnicer, J. M.; García-Esnaola, M.; Peña, J. M., Convexity of rational curves and total positivity, J. Comput. Appl. Math., 71, 365-382 (1996) · Zbl 0853.65019
[5] Mainar, E.; Peña, J. M., Optimal bases for a class of mixed spaces and their associated spline spaces, Comput. Math. Appl., 59, 1509-1523 (2010) · Zbl 1189.41005
[6] Han, X. L., Normalized B-basis of the space of trigonometric polynomials and curve design, Appl. Math. Comput., 251, 336-348 (2015) · Zbl 1328.41004
[7] Phillips, G. M., Interpolation and Approximation by Polynomials (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1023.41002
[8] Aral, A.; Gupta, V.; Agarual, R. P., Applications of \(q\)-Calculus in Operator Theory (2013), Springer: Springer New York
[9] Lupaş, A., A \(q\)-analogue of the Bernstein operator, (Seminar on Numerical and Statistical Calculus vol. 9 (1987)), 85-92 · Zbl 0684.41014
[10] Phillips, G. M., Bernstein polynomials based on the \(q\)-integers, Ann. Numer. Math., 4, 511-518 (1997) · Zbl 0881.41008
[11] Ostrovska, S., \(q\)-Bernstein polynomials and their iterates, J. Approx. Theory, 123, 232-255 (2003) · Zbl 1093.41013
[12] Wang, H. P.; Meng, F. J., The rate of convergence of \(q\)-Bernstein polynomials for \(0 < q < 1\), J. Approx. Theory, 136, 151-158 (2005) · Zbl 1082.41007
[13] Ren, M. Y.; Zeng, X. M., Approximation of Schurer type \(q\)-Bernstein-Kantorovich operators, J. Inequal. Appl., 82, 1-12 (2015) · Zbl 1310.41021
[14] Agrawal, P. N.; Finta, Zolt; Sathish Kumar, A., Bernstein-Schurer-Kantorovich operators based on \(q\)-integers, Appl. Math. Comput., 256, 222-231 (2015) · Zbl 1338.41012
[15] Oruç, H.; Phillips, G. M., \(q\)-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 151, 1-12 (2003) · Zbl 1014.65015
[16] Dişibüyük, Ç.; Oruç, H., A generalization of rational Bernstein-Bézier curves, BIT, 47, 313-323 (2007) · Zbl 1118.65010
[17] Dişibüyük, Ç.; Oruç, H., Tensor product \(q\)-Bernstein polynomials, BIT, 48, 689-700 (2008) · Zbl 1169.65011
[18] Simeonov, P.; Zafiris, V.; Goldman, R., \(q\)-Blossoming: A new approach to algorithms and identities for \(q\)-Bernstein bases and \(q\)-Bézier curves, J. Approx. Theory, 164, 77-104 (2012) · Zbl 1242.65036
[19] Simeonov, P.; Goldman, R., Quantum B-splines, BIT, 53, 193-223 (2013) · Zbl 1275.65011
[20] Budakçi, G.; Dişibüyük, Ç.; Goldman, R.; Oruç, H., Extending fundamental formulas from classical B-splines to quantum B-splines, J. Comput. Appl. Math., 282, 17-33 (2015) · Zbl 1309.65018
[21] Ostrovska, S., On the Lupaş \(q\)-analogue of the Bernstein operator, J. Math., 36, 1615-1629 (2006) · Zbl 1138.41008
[22] Ostrovska, S., On the Lupaş \(q\)-transform, Comput. Math. Appl., 61, 527-532 (2011) · Zbl 1217.44006
[23] Mahmudov, N. I.; Sabancigil, P., Voronovskaja type theorem for the Lupaş \(q\)-analogue of the Bernstein operators, Math. Commun., 17, 83-91 (2012) · Zbl 1250.41011
[24] Wang, H. P.; Zhang, Y. B., The rate of convergence of Lupaş \(q\)-analogue Bernstein operators, Abstr. Appl. Anal., 1-6 (2014)
[25] Phillips, G. M., A survey of results on the \(q\)-Bernstein polynomials, MA J. Numer. Anal., 30, 277-288 (2010) · Zbl 1191.41002
[26] Han, L. W.; Chu, Y.; Qiu, Z. Y., Generalized Bézier curves and surfaces based on Lupaş \(q\)-analogue of Bernstein operator, J. Comput. Appl. Math., 261, 352-363 (2014) · Zbl 1281.65022
[27] Gasca, M.; Micchelli, C. A., Total Positivity and its Applications (1996), Kluwer Academic Publishers
[28] Karlin, S., Total Positivity (1968), Stanford University Press · Zbl 0219.47030
[29] Gasca, M.; Peña, J. M., Total positivity and Neville elimination, Linear Algebra Appl., 165, 25-44 (1992) · Zbl 0749.15010
[30] Gasca, M.; Peña, J. M., Total positivity, \(Q R\) factorization, and Neville elimination, SIAM J. Matrix Anal. Appl., 14, 1132-1140 (1993) · Zbl 0788.65052
[31] Goodman, T. N.T., Total positivity and shape of curves, (Gasca, M.; Micchelli, C. A., Total Positivity and its Applications (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 157-186 · Zbl 0894.68159
[32] Mazure, M. L., Extended Chebyshev spaces in rationality, BIT, 53, 1013-1045 (2013) · Zbl 1287.65010
[33] Piegl, L., A geometric investigation of the rational Bézier scheme of computer aided design, Comput. Ind., 7, 401-410 (1986)
[34] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, Germany · Zbl 0868.68106
[35] Barry, P.; Goldman, R., Shape parameter deletion for Pólya curves, Numer. Algorithms, 1, 121-137 (1991) · Zbl 0749.41009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.