zbMATH — the first resource for mathematics

Crystal precipitation and dissolution in a thin strip. (English) Zbl 1154.82321
Summary: We present a two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium. The local geometry of the pore is represented as a thin strip and the model allows for changes in the pore volume. A formal limiting argument, for the limit of the width of the strip going to zero, leads to a system of one-dimensional effective upscaled equations. We show that the effective equations allow for travelling-wave solutions and prove the existence and uniqueness of these. Numerical solutions of the effective equations are compared with numerical solutions of the original equations on the thin strip and with analytical results. We also show that a model from the literature that does not allow changes in the pore volume can be obtained from the present model as a formal limit.

82D25 Statistical mechanical studies of crystals
76D07 Stokes and related (Oseen, etc.) flows
35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI
[1] DOI: 10.1016/0309-1708(95)00005-4 · doi:10.1016/0309-1708(95)00005-4
[2] Hornung, RAIRO Modél. Math. Anal. Numér. 28 pp 59– (1994)
[3] DOI: 10.1090/S0025-5718-05-01782-5 · Zbl 1107.65082 · doi:10.1090/S0025-5718-05-01782-5
[4] DOI: 10.1093/imamat/hxm060 · Zbl 1153.80004 · doi:10.1093/imamat/hxm060
[5] DOI: 10.1023/A:1011598102680 · Zbl 0943.76083 · doi:10.1023/A:1011598102680
[6] Donea, Encyclopedia of Computational Mechanics, Vol. 1(Fundamentals) (2004)
[7] DOI: 10.1016/S0377-0427(97)00049-6 · Zbl 0893.76087 · doi:10.1016/S0377-0427(97)00049-6
[8] DOI: 10.1090/S0002-9939-97-03759-3 · Zbl 0872.35023 · doi:10.1090/S0002-9939-97-03759-3
[9] DOI: 10.1017/S0956792500001121 · Zbl 0787.76085 · doi:10.1017/S0956792500001121
[10] van, European J. Appl. Math. 8 pp 49– (1997)
[11] van Duijn, J. Reine Angew. Math. 415 pp 1– (1991)
[12] DOI: 10.1016/j.jcp.2006.08.013 · Zbl 1147.76624 · doi:10.1016/j.jcp.2006.08.013
[13] van Duijn, J. Reine Angew. Math. 577 pp 171– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.