×

A characterisation of Manhart’s relative normal vector fields. (English) Zbl 1244.53007

Consider an oriented surface \(M\) in three dimensional affine space \({\mathbb A}^3\) with nowhere degenerate Blaschke metric. The set of all tangent and \({\mathbb A}^3\)-valued vector fields along \(M\) are denoted by \(X(M)\) and \({\bar X}(M)\) respectively. A vector field \(Y\in{\bar X}(M)\) is called a relative normalization if for all \(p\in M\) holds \(Y(p)\not\in T_p M\) and \(D_V Y\in X(M)\) for all \(V\in X(M)\). Here, \(D\) denotes the standard connection in \({\mathbb A}^3\).
Let \(f:D\rightarrow {\mathbb R}:(u,v)\mapsto f(u,v)\) be an arbitrary smooth, nowhere vanishing function of two variables, where \(D\) contains the set\(\{(u,v)\in {\mathbb R}^2\mid u^2\geq v \) and \(v\neq 0\}\). Then for any non degenerate surface in Euclidean space the vector field given by \[ N^M_f=f(H,K)N-grad_{II}(f(H,K)) \] is a relative normal vector field. Here \(N, H\) and \(K\) denote the Euclidean normal vector field, mean curvature and Gaussian curvature respectively and \(grad_{II}\) stands for the gradient with respect to the Euclidean second fundamental form.
The critical points of the relative area element are the relative minimal surfaces characterized by vanishing of the relative mean curvature. On the other hand, one can consider the critical points of the curvature functionals \(\int f(H,K)d\Omega\) with \(\Omega\) denoting the classical area element. It is proved that the two classes of surfaces coincide exactly in case of \(f(u,v)=|v|^{\alpha}\) \((\alpha\neq 0)\), characterizing a one parameter family of relative normal vector fields defined by the reviewer. In addition two characterizations of the Euclidean sphere by means of (Euclidean) curvature invariants are given.

MSC:

53A05 Surfaces in Euclidean and related spaces
53A15 Affine differential geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.2307/2374069 · Zbl 0501.53037 · doi:10.2307/2374069
[2] Duschek A., Sitzungsberichte Wien 135 pp 1– (1926)
[3] DOI: 10.1007/BF01297274 · Zbl 0284.53006 · doi:10.1007/BF01297274
[4] Grotemeyer K.-P., Math. (Basel) 4 pp 230– (1953)
[5] Manhart F., Akad. Wiss. Math.-Natur. Kl. 119 pp 157– (1982)
[6] Manhart F., Math. (Basel) 44 pp 547– (1985)
[7] Manhart F., Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 195 pp 281– (1986)
[8] Manhart F., Results Math. 13 pp 327– (1988)
[9] Manhart F., Glas. Mat. Ser. III 24 (44) pp 541– (1989)
[10] DOI: 10.1007/BF00182120 · Zbl 0733.53006 · doi:10.1007/BF00182120
[11] DOI: 10.1007/BF01445180 · JFM 34.0649.01 · doi:10.1007/BF01445180
[12] DOI: 10.1007/BF01702709 · JFM 48.0810.04 · doi:10.1007/BF01702709
[13] Schneider R., Math. (Basel) 17 pp 267– (1966)
[14] DOI: 10.1007/BF01781970 · Zbl 0153.23003 · doi:10.1007/BF01781970
[15] DOI: 10.3318/PRIA.2009.109.2.187 · Zbl 1197.53078 · doi:10.3318/PRIA.2009.109.2.187
[16] Wulff G., Zeitschrift für Krystallographie und Mineralogie 34 pp 449– (1901)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.