×

Covering fuzzy rough sets via variable precision. (English) Zbl 1477.03229

Summary: Lately, covering fuzzy rough sets via variable precision according to a fuzzy \(\gamma\)-neighborhood were established by J. Zhan et al. [Inf. Sci. 538, 314–336 (2020; Zbl 1474.68378)] model. Also, Ma et al. gave the definition of complementary fuzzy \(\gamma\)-neighborhood with reflexivity. In a related context, we used the concepts by J. Ma et al. [“Novel models of fuzzy rough coverings based on fuzzy \(\alpha\)-neighborhood and its application to decision-making”, IEEE Access 8, 224354–224364 (2020; doi:10.1109/ACCESS.2020.3044213)] to construct three new kinds of covering-based variable precision fuzzy rough sets. Furthermore, we establish the relevant characteristics. Also, we study the relationships between Zhan’s model and our three models. Finally, we introduce a MADM approach to make a decision on a real problem.

MSC:

03E72 Theory of fuzzy sets, etc.
68T37 Reasoning under uncertainty in the context of artificial intelligence

Citations:

Zbl 1474.68378

Software:

MADM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pawlak, Z. a., Rough sets, International Journal of Computer & Information Sciences, 11, 5, 341-356 (1982) · Zbl 0501.68053 · doi:10.1007/bf01001956
[2] Pawlak, Z., Rough sets and fuzzy sets, Fuzzy Sets and Systems, 17, 1, 99-102 (1985) · Zbl 0588.04004 · doi:10.1016/s0165-0114(85)80029-4
[3] Atef, M.; Khalil, A. M.; Li, S.-G.; Azzam, A. A.; El Atik, A. E. F., Comparison of six types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space, Journal of Intelligent & Fuzzy Systems, 39, 3, 4515-4531 (2020) · doi:10.3233/jifs-200482
[4] El Atik, A. A.; Nawar, A. S.; Atef, M., Rough approximation models via graphs based on neighborhood systems, Granular Computing (2020), inpress · doi:10.1007/s41066-020-00245-z
[5] Liu, G.; Zhu, W., The algebraic structures of generalized rough set theory, Information Sciences, 178, 21, 4105-4113 (2008) · Zbl 1162.68667 · doi:10.1016/j.ins.2008.06.021
[6] Hu, Q.; Zhang, L.; Chen, D.; Pedrycz, W.; Yu, D., Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications, International Journal of Approximate Reasoning, 51, 4, 453-471 (2010) · Zbl 1205.68424 · doi:10.1016/j.ijar.2010.01.004
[7] Jensen, R.; Shen, Q., Fuzzy-rough attribute reduction with application to web categorization, Fuzzy Sets and Systems, 141, 3, 469-485 (2004) · Zbl 1069.68609 · doi:10.1016/s0165-0114(03)00021-6
[8] Pal, S.; Mitra, P., Case generation using rough sets with fuzzy representation, IEEE Transactions on Knowledge and Data Engineering, 16, 293-300 (2004) · doi:10.1109/tkde.2003.1262181
[9] Qian, Y.; Liang, J.; Dang, C., Knowledge structure, knowledge granulation and knowledge distance in a knowledge base, International Journal of Approximate Reasoning, 50, 1, 174-188 (2009) · Zbl 1191.68660 · doi:10.1016/j.ijar.2008.08.004
[10] Al-shami, T. M.; Fu, W. Q.; Abo-Tabl, E. A., New rough approximations based on E-neighborhoods, Complexity, 2021 (2021)
[11] Yang, X.; Li, T., The minimization of axiom sets characterizing generalized approximation operators, Information Sciences, 176, 7, 887-899 (2006) · Zbl 1094.03042 · doi:10.1016/j.ins.2005.01.012
[12] Yao, Y., Three-way decisions with probabilistic rough sets, Information Sciences, 180, 3, 341-353 (2010) · doi:10.1016/j.ins.2009.09.021
[13] Zhang, H.; Liang, H.; Liu, D., Two new operators in rough set theory with applications to fuzzy sets, Information Sciences, 166, 1-4, 147-165 (2004) · Zbl 1101.68871 · doi:10.1016/j.ins.2003.11.003
[14] Pomykala, J. A., Approximation operations in approximation space, Bulletin of the Polish Academy of Science, 35, 653-662 (1987) · Zbl 0642.54002
[15] Pomykala, J. A., On definability in the nondeterministic information system, Bulletin of the Polish Academy of Science, 36, 193-210 (1988) · Zbl 0677.68110
[16] Yao, Y., Constructive and algebraic methods of the theory of rough sets, Information Sciences, 109, 1-4, 21-47 (1998) · Zbl 0934.03071 · doi:10.1016/s0020-0255(98)00012-7
[17] Couso, I.; Dubois, D., Rough sets, coverings and incomplete information, Fundamenta Informaticae, 108, 3-4, 223-247 (2011) · Zbl 1279.68308 · doi:10.3233/fi-2011-421
[18] Bonikowski, Z.; Bryniarski, E.; Wybraniec-Skardowska, U., Extensions and intentions in the rough set theory, Information Sciences, 107, 1-4, 149-167 (1998) · Zbl 0934.03069 · doi:10.1016/s0020-0255(97)10046-9
[19] Zhu, W.; Wang, F.-Y., On three types of covering-based rough sets, IEEE Transactions on Knowledge and Data Engineering, 19, 8, 1131-1144 (2007) · doi:10.1109/tkde.2007.1044
[20] Zhu, W.; Wang, F.-Y., The fourth type of covering-based rough sets, Information Sciences, 201, 80-92 (2012) · Zbl 1248.68499 · doi:10.1016/j.ins.2012.01.026
[21] Liu, G.; Sai, Y., A comparison of two types of rough sets induced by coverings, International Journal of Approximate Reasoning, 50, 3, 521-528 (2009) · Zbl 1191.68689 · doi:10.1016/j.ijar.2008.11.001
[22] Ma, L., On some types of neighborhood-related covering rough sets, International Journal of Approximate Reasoning, 53, 6, 901-911 (2012) · Zbl 1246.03068 · doi:10.1016/j.ijar.2012.03.004
[23] Ma, L., Two fuzzy covering rough set models and their generalizations over fuzzy lattices, Fuzzy Sets and Systems, 294, 1-17 (2016) · Zbl 1374.03049 · doi:10.1016/j.fss.2015.05.002
[24] Yang, B.; Hu, B. Q., On some types of fuzzy covering-based rough sets, Fuzzy Sets and Systems, 312, 36-65 (2017) · Zbl 1393.03044 · doi:10.1016/j.fss.2016.10.009
[25] Yang, B.; Hu, B. Q., A fuzzy covering-based rough set model and its generalization over fuzzy lattice, Information Sciences, 367-368, 368, 463-486 (2016) · Zbl 1428.03070 · doi:10.1016/j.ins.2016.05.053
[26] Yang, B.; Hu, B. Q., Fuzzy neighborhood operators and derived fuzzy coverings, Fuzzy Sets and Systems, 370, 1-33 (2019) · Zbl 1423.54027 · doi:10.1016/j.fss.2018.05.017
[27] D’eer, L.; Cornelis, C.; Godo, L., Fuzzy neighborhood operators based on fuzzy coverings, Fuzzy Sets and Systems, 312, 17-35 (2017) · Zbl 1394.54005
[28] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 2-3, 191-209 (1990) · Zbl 0715.04006 · doi:10.1080/03081079008935107
[29] Atef, M.; Nada, S.; Gumaei, A.; Nawar, A. S., On three types of soft rough covering-based fuzzy sets, Journal of Mathematics, 2021 (2021) · Zbl 1477.03230 · doi:10.1155/2021/6677298
[30] Deng, T.; Chen, Y.; Xu, W.; Dai, Q., A novel approach to fuzzy rough sets based on a fuzzy covering, Information Sciences, 177, 11, 2308-2326 (2007) · Zbl 1119.03051 · doi:10.1016/j.ins.2006.11.013
[31] De Cock, M.; Cornelis, C.; Kerre, E., Fuzzy rough sets: beyond the obvious, Proceedings IEEE International Conference on Fuzzy Systems, 1, 103-108 (2004)
[32] Feng, T.; Zhang, S.-P.; Mi, J.-S., The reduction and fusion of fuzzy covering systems based on the evidence theory, International Journal of Approximate Reasoning, 53, 1, 87-103 (2012) · Zbl 1242.68326 · doi:10.1016/j.ijar.2011.10.002
[33] Li, T.; Ma, J., Fuzzy Approximation Operators Based on Coverings, International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, 55-62 (2007), Berlin, Germany: Springer, Berlin, Germany
[34] Ziarko, W., Variable precision rough set model, Journal of Computer and System Sciences, 46, 1, 39-59 (1993) · Zbl 0764.68162 · doi:10.1016/0022-0000(93)90048-2
[35] Zhao, S. Y.; Tsang, E. C.; Chen, D., The model of fuzzy variable precision rough sets, IEEE Transactions on Fuzzy Systems, 17, 2, 451-467 (2009)
[36] Jiang, H.; Zhan, J.; Chen, D., PROMETHEE II method based on variable precision fuzzy rough sets with fuzzy neighborhoods, Artificial Intelligence Review, 54, 3 (2020) · doi:10.1007/s10462-020-09878-7
[37] Azzam, A. A.; Khalil, A. M.; Li, S.-G., Medical applications via minimal topological structure, Journal of Intelligent & Fuzzy Systems, 39, 3, 4723-4730 (2020) · doi:10.3233/JIFS-200651
[38] Feng, T.; Mi, J.-S., Variable precision multigranulation decision-theoretic fuzzy rough sets, Knowledge-Based Systems, 91, 93-101 (2016) · doi:10.1016/j.knosys.2015.10.007
[39] Wang, C. Y.; Hu, B. Q., Granular variable precision fuzzy rough sets with general fuzzy relations, Fuzzy Sets and Systems, 275, 39-57 (2015) · Zbl 1373.03120 · doi:10.1016/j.fss.2015.01.016
[40] Yao, Y.; Mi, J.; Li, Z., A novel variable precision -fuzzy rough set model based on fuzzy granules, Fuzzy Sets and Systems, 236, 58-72 (2014) · Zbl 1315.68248 · doi:10.1016/j.fss.2013.06.012
[41] Yoon, K. P.; Hwang, C. L., Multiple Attribute Decision Making an Introduction, 104 (1995), Thousand Oaks, CF, USA: Sage Publications, Thousand Oaks, CF, USA
[42] Al-shami, T. M., On soft separation axioms and their applications on decision-making problem, Mathematical Problems in Engineering, 2021 (2021) · Zbl 1512.54007 · doi:10.1155/2021/8876978
[43] Garg, H.; Ali, Z.; Mahmood, T., Algorithms for complex interval‐valued q‐rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS, Expert Systems, 38, 1, e12609 (2020) · doi:10.1111/exsy.12609
[44] Garg, H.; Arora, R.; Arora, R., TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information, AIMS Mathematics, 5, 4, 2944 (2020) · Zbl 1484.91128 · doi:10.3934/math.2020190
[45] Garg, H.; Kumar, K., A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory, Artificial Intelligence Review, 53, 1, 595-624 (2020) · doi:10.1007/s10462-018-9668-5
[46] Garg, H.; Kaur, G., TOPSIS based on nonlinear-programming methodology for solving decision-making problems under cubic intuitionistic fuzzy set environment, Computational and Applied Mathematics, 38, 3, 114 (2019) · Zbl 1438.62002 · doi:10.1007/s40314-019-0869-6
[47] Garg, H.; Keikha, A.; Mishmast Nehi, H., Multiple-attribute decision-making problem using TOPSIS and choquet integral with hesitant fuzzy number information, Mathematical Problems in Engineering, 2020 (2020) · Zbl 1459.91043 · doi:10.1155/2020/9874951
[48] Jiang, H.; Zhan, J.; Sun, B.; Alcantud, J. C. R., An MADM approach to covering-based variable precision fuzzy rough sets: an application to medical diagnosis, International Journal of Machine Learning and Cybernetics, 11, 9, 2181-2207 (2020) · doi:10.1007/s13042-020-01109-3
[49] Ma, J.; Atef, M.; Nada, S.; Nawar, A., Certain types of covering-based multigranulation (I; T)-Fuzzy rough sets with application to decision-making, Complexity, 2020 (2020) · Zbl 1454.68146 · doi:10.1155/2020/6661782
[50] Wang, L.; Garg, H.; Li, N., Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight, Soft Computing, 25, 2, 1-21 (2020) · Zbl 1491.91069 · doi:10.1007/s00500-020-05193-z
[51] Zhang, K.; Zhan, J.; Wu, W.-Z., On multi-criteria decision-making method based on a fuzzy rough set model with fuzzy α-neighborhoods, IEEE Transactions on Fuzzy Systems, 99, 1 (2020) · doi:10.1109/TFUZZ.2020.3001670
[52] Zhan, J.; Jiang, H.; Yao, Y., Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS methods, Information Sciences, 538, 314-336 (2020) · Zbl 1474.68378 · doi:10.1016/j.ins.2020.06.006
[53] Ma, J.; Atef, M.; Khalil, A. M.; Hassan, N.; Chen, G.-X., Novel models of fuzzy rough coverings based on fuzzy α-neighborhood and its application to decision-making, IEEE Access, 8, 224354-224364 (2020) · doi:10.1109/ACCESS.2020.3044213
[54] Radzikowska, A. M.; Kerre, E. E., A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 2, 137-155 (2002) · Zbl 1004.03043 · doi:10.1016/s0165-0114(01)00032-x
[55] Li, T.-J.; Leung, Y.; Zhang, W.-X., Generalized fuzzy rough approximation operators based on fuzzy coverings, International Journal of Approximate Reasoning, 48, 3, 836-856 (2008) · Zbl 1186.68464 · doi:10.1016/j.ijar.2008.01.006
[56] Brans, J. P.; Vincke, P.; Mareschal, B., How to select and how to rank projects: the PROMETHEE method, European Journal of Operational Research, 24, 2, 228-238 (1986) · Zbl 0576.90056 · doi:10.1016/0377-2217(86)90044-5
[57] Hwang, C. L.; Yoon, K., Multiple Attributes Decision Making Methods and Applications (1981), Berlin, Germany: Springer, Berlin, Germany · Zbl 0453.90002
[58] Harsanyi, J. C.; Cardinal welfare, Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility, Journal of Political Economy, 63, 4, 309-321 (1955) · doi:10.1086/257678
[59] Yager, R. R., On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on Systems, Man, and Cybernetics, 18, 1, 183-190 (1988) · Zbl 0637.90057 · doi:10.1109/21.87068
[60] Opricovic, S.; Tzeng, G.-H., Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156, 2, 445-455 (2004) · Zbl 1056.90090 · doi:10.1016/s0377-2217(03)00020-1
[61] Garg, H., A new possibility degree measure for interval‐valued q‐rung orthopair fuzzy sets in decision‐making, International Journal of Intelligent Systems, 36, 1, 526-557 (2020) · doi:10.1002/int.22308
[62] Garg, H., Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12, 6, 1313-1337 (2020) · doi:10.1007/s12559-020-09750-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.