×

Transient dynamics of Pearson diffusions facilitates estimation of rate parameters. (English) Zbl 1453.60137

Summary: Estimation of parameters in stochastic processes has been thoroughly investigated for decades and the asymptotic properties of the estimators are known. However, reaching the regime where the asymptotic properties are valid might require such a long time that the well based theoretical results have no practical value. One example of this situation is at the center of our interest. It concerns determination of the time constant in stochastic Langevin equations with additive or multiplicative white-noise terms. Often the number of observations to achieve the asymptotic conditions is beyond the physical limits. Here we show how to overcome the problem by external perturbation of the system. Furthermore, we show that the perturbation is not at the price of deterioration of the estimates of other parameters unless the observation interval is very short compared to the typical time constant of the system. Three processes from the class of Pearson diffusions are studied. They are frequently used in many applications, in particular, they are examples of leaky integrate-and-fire models, which describe the electrical properties of a neuronal membrane. These neuronal models are often used as examples of systems with excitable dynamics. The most commonly investigated process is the Ornstein-Uhlenbeck process, which has additive noise. Furthermore, the square-root process and the Jacobi process are examples of processes with multiplicative noise. The results are illustrated on computer experiments, which show a striking improvement of the estimates of the rate parameter. It has implications for experimental design, where the information about the parameters can be increased for the same amount and cost of data, which is particularly important when samples are expensive or difficult to obtain.

MSC:

60J60 Diffusion processes
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
62F10 Point estimation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berg, R. W.; Ditlevsen, S., Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations, J Neurophysiol, 110, 4, 1021-1034 (2013)
[2] Bhattacharjee, A.; Das, M. K., Emergent dynamics of spiking neurons with fluctuating threshold, Commun Nonlinear Sci NumerSimul, 46, 126-134 (2017) · Zbl 1485.92023
[3] Cox, J.; Ingersoll, J.; Ross, S., A theory of the term structure of interest-rates, Econometrica, 53, 2, 385-407 (1985) · Zbl 1274.91447
[4] 5th International Conference on Computational Stochastic Mechanics, Rhodes, GREECE, MAY 21-23, 2006
[5] Ditlevsen, S.; Greenwood, P., The Morris-Lecar neuron model embeds a leaky integrate-and-fire model, J Math Biol, 67, 2, 239-259 (2013) · Zbl 1315.60044
[6] Ditlevsen, S.; Lansky, P., Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model, Phys Rev E, 71, 011907 (2005)
[7] Ditlevsen, S.; Lansky, P., Estimation of the input parameters in the Feller neuronal model, Phys Rev E, 73, 061910 (2006) · Zbl 1244.92006
[8] Ditlevsen, S.; Lansky, P., Only through perturbation can relaxation times be estimated, Phys Rev E, 86, 5, 1, 050102 (2012)
[9] 978-3-642-32157-3; 978-3-642-32156-6. · Zbl 1390.92008
[10] Ditlevsen, S.; Samson, A., Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods, Ann Appl Stat, 8, 2, 674-702 (2014) · Zbl 1454.62246
[11] D’Onofrio, G.; Lansky, P.; Tamborrino, M., Inhibition enhances the coherence in the Jacobi neuronal model, Chaos, Soliton Fractals, 128, 108-113 (2019) · Zbl 1483.92036
[12] D’Onofrio, G.; Tamborrino, M.; Lansky, P., The Jacobi diffusion process as a neuronal model, Chaos, 28, 10 (2018) · Zbl 1400.92090
[13] Forman, J. L.; Sørensen, M., The Pearson diffusions: a class of statistically tractable diffusion processes, Scand J Stat, 35, 3, 438-465 (2008) · Zbl 1198.62078
[14] Gardiner, C., Handbook of stochastic methods for physics, chemistry and the natural sciences (1990), Springer, Berlin · Zbl 0713.60076
[15] Gerstner, W.; Kistler, W. M., Spiking neuron models - single neurons, populations, plasticity (2002), Cambridge University Press, Cambridge UK · Zbl 1100.92501
[16] Gerstner, W.; Kistler, W. M.; Naud, R.; Paninski, L., Neuronal dynamics - from single neurons to networks and models of cognition (2014), Cambridge University Press, Cambridge UK
[17] Harrison, L.; David, O.; Friston, K., Stochastic models of neuronal dynamics, Philos Trans R Soc Lond B Biol Sci, 360, 1075-1091 (2005)
[18] Hooker, G.; Lin, K. K.; Rogers, B., Control theory and experimental design in diffusion processes, SIAM-ASA Journal on Uncertainty Quantification, 3, 1, 234-264 (2015) · Zbl 1327.62437
[19] Iolov, A.; Ditlevsen, S.; Longtin, A., Optimal design for estimation in diffusion processes from first hitting times, SIAM-ASA J Uncertain Quantificat, 5, 1, 88-110 (2017) · Zbl 1365.62305
[20] Jahn, P.; Berg, R. W.; Hounsgaard, J.; Ditlevsen, S., Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process, J Comput Neurosci, 31, 3, 563-579 (2011) · Zbl 1446.92134
[21] Karlin, S.; Taylor, H., A second course in stochastic processes (1981), Academic Press, San Diego · Zbl 0469.60001
[22] Koch, C.; Rapp, M.; Segev, I., A brief history of time (constants), Cerebral Cortex, 6, 2, 93-101 (1996)
[23] Lanska, V.; Lansky, P., Input parameters in a one-dimensional neuronal model with reversal potentials, Biosystems, 48, 123-129 (1998)
[24] Lansky, P., Inference for the Diffusion-Models of Neuronal-Activity, Mathematical Biosciences, 67, 2, 247-260 (1983) · Zbl 0531.62093
[25] Lansky, P.; Ditlevsen, S., A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models, Biological Cybernetics, 99, 4-5, 253-262 (2008) · Zbl 1154.92012
[26] Larsen, K. S.; Sørensen, M., Diffusion models for exchange rates in a target zone, Math Finance, 17, 2, 285-306 (2007) · Zbl 1186.91232
[27] Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L., Effects of noise in excitable systems, Phys Report-Rev Sec Phys Lett, 392, 6, 321-424 (2004)
[28] NATO Advanced Research Workshop : Stochastic Resonance in Physics and Biology, San Diego, CA, MAR 30-APR 03, 1992 · Zbl 1002.92503
[29] Mullooly, J., Maximum likelihood estimation for stochastic first order reactions, Bull Math Biophys, 33, 1, 83 (1971) · Zbl 0218.62127
[30] Pikovsky, A.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys Rev Lett, 78, 5, 775-778 (1997) · Zbl 0961.70506
[31] Prakasa Rao, B., Statistical inference for diffusion type processes (1999), Arnold · Zbl 0952.62077
[32] 978-3-642-32157-3; 978-3-642-32156-6 · Zbl 1390.92032
[33] Shekofteh, Y.; Jafari, S.; Sprott, J. C.; Golpayegani, S. M.R. H.; Almasganj, F., A gaussian mixture model based cost function for parameter estimation of chaotic biological systems, Commun Nonlinear Sci Numer Simul, 20, 2, 469-481 (2015)
[34] Shoji, I., Detecting the sampling rate through observations, Commun Nonlinear Sci NumerSimul, 62, 445-453 (2018) · Zbl 1470.62140
[35] Sørensen, M., Statistical methods for stochastic differential equations, 1-99 (2012), Chapman & Hall · Zbl 1246.60005
[36] Tamborrino, M.; Ditlevsen, S.; Markussen, B.; Kyllingsbaek, S., Gaussian counter models for visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks, J Math Psychol, 79, 85-103 (2017) · Zbl 1397.91537
[37] Tang, C. Y.; Chen, S. X., Parameter estimation and bias correction for diffusion processes, J Econometr, 149, 1, 65-81 (2009) · Zbl 1429.62370
[38] Thorbergsson, L.; Hooker, G., Experimental design for partially observed Markov decision processes, SIAM-ASA J Uncertain Quantificat, 6, 2, 549-567 (2018) · Zbl 1391.90634
[39] Wang, Q.; Zhang, H.; Perc, M.; Chen, G., Multiple firing coherence resonances in excitatory and inhibitory coupled neurons, Commun Nonlinear Sci NumerSimul, 17, 10, 3979-3988 (2012) · Zbl 1250.92004
[40] Wang, X.; Phillips, P. C.B.; Yu, J., Bias in estimating multivariate and univariate diffusions, J Econometr, 161, 2, 228-245 (2011) · Zbl 1441.62900
[41] Yu, J., Bias in the estimation of the mean reversion parameter in continuous time models, J Econometr, 169, 1, 114-122 (2012) · Zbl 1443.62225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.