Fan, Neil J. Y.; Li, Yao On the Ehrhart polynomial of Schubert matroids. (English) Zbl 1532.05030 Discrete Comput. Geom. 71, No. 2, 587-626 (2024). Summary: In this paper, we give a formula for the number of lattice points in the dilations of Schubert matroid polytopes. As applications, we obtain the Ehrhart polynomials of uniform and minimal matroids as special cases, and give a recursive formula for the Ehrhart polynomials of \((a, b)\)-Catalan matroids. Ferroni showed that uniform and minimal matroids are Ehrhart positive. We show that all sparse paving Schubert matroids are Ehrhart positive and their Ehrhart polynomials are coefficient-wisely bounded by those of minimal and uniform matroids. This confirms a conjecture of Ferroni for the case of sparse paving Schubert matroids. Furthermore, we introduce notched rectangle matroids, which include minimal matroids, sparse paving Schubert matroids and panhandle matroids. We show that three subfamilies of notched rectangle matroids are Ehrhart positive, and conjecture that all notched rectangle matroids are Ehrhart positive. Cited in 1 Document MSC: 05B35 Combinatorial aspects of matroids and geometric lattices 52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) 14N15 Classical problems, Schubert calculus Keywords:Schubert matroids; Ehrhart polynomials; lattice path matroids; matroid polytopes × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Ardila, F., The Catalan matroid, J. Comb. Theory Ser. A, 104, 1, 49-62 (2003) · Zbl 1031.05030 · doi:10.1016/S0097-3165(03)00121-3 [2] Ardila, F.; Fink, A.; Rincón, F., Valuations for matroid polytope subdivisions, Can. J. Math., 62, 6, 1228-1245 (2010) · Zbl 1231.05053 · doi:10.4153/CJM-2010-064-9 [3] Billera, LJ; Jia, N.; Reiner, V., A quasisymmetric function for matroids, Eur. J. Comb., 30, 8, 1727-1757 (2009) · Zbl 1179.05025 · doi:10.1016/j.ejc.2008.12.007 [4] Bonin, JE, Basis-exchange properties of sparse paving matroids, Adv. Appl. Math., 50, 1, 6-15 (2013) · Zbl 1256.05037 · doi:10.1016/j.aam.2011.05.006 [5] Bonin, JE; de Mier, A., Lattice path matroids: structural properties, Eur. J. Comb., 27, 5, 701-738 (2006) · Zbl 1087.05014 · doi:10.1016/j.ejc.2005.01.008 [6] Bonin, J., de Mier, A., Noy, M.: Lattice path matroids: enumerative aspects and Tutte polynomials. J. Comb. Theory Ser. A 104(1), 63-94 (2003) · Zbl 1031.05031 [7] Castillo, F.; Liu, F., Berline-Vergne valuation and generalized permutohedra, Discrete Comput. Geom., 60, 4, 885-908 (2018) · Zbl 1401.52024 · doi:10.1007/s00454-017-9950-3 [8] Crapo, H.H.: Single-element extensions of matroids. J. Res. Nat. Bur. Stand. Sect. B 69B, 55-65 (1965) · Zbl 0141.21701 [9] Crapo, H.; Schmitt, W., A free subalgebra of the algebra of matroids, Eur. J. Comb., 26, 7, 1066-1085 (2005) · Zbl 1071.05025 · doi:10.1016/j.ejc.2004.05.006 [10] De Loera, JA; Haws, DC; Köppe, M., Ehrhart polynomials of matroid polytopes and polymatroids, Discrete Comput. Geom., 42, 4, 670-704 (2009) · Zbl 1207.52015 · doi:10.1007/s00454-008-9080-z [11] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 7, 53-88 (1974) · Zbl 0312.14009 · doi:10.24033/asens.1261 [12] Demazure, M., Une nouvelle formule des caractères, Bull. Sci. Math., 98, 3, 163-172 (1974) · Zbl 0365.17005 [13] Derksen, H.; Fink, A., Valuative invariants for polymatroids, Adv. Math., 225, 4, 1840-1892 (2010) · Zbl 1221.05031 · doi:10.1016/j.aim.2010.04.016 [14] Dinolt, G.W.: An extremal problem for non-separable matroids. In: Théorie des Matroides (Brest 1970). Lecture Notes in Math., vol. 211, pp. 31-49. Springer, Berlin (1971) · Zbl 0215.33603 [15] Fan, NJY; Guo, PL, Vertices of Schubitopes, J. Comb. Theory Ser. A, 177 (2021) · Zbl 1448.05207 · doi:10.1016/j.jcta.2020.105311 [16] Ferroni, L., Hypersimplices are Ehrhart positive, J. Comb. Theory Ser. A, 178 (2021) · Zbl 1459.52010 · doi:10.1016/j.jcta.2020.105365 [17] Ferroni, L., On the Ehrhart polynomial of minimal matroids, Discrete Comput. Geom., 68, 1, 255-273 (2022) · Zbl 1490.05026 · doi:10.1007/s00454-021-00313-4 [18] Ferroni, L., Matroids are not Ehrhart positive, Adv. Math., 402 (2022) · Zbl 1487.52022 · doi:10.1016/j.aim.2022.108337 [19] Ferroni, L.; Jochemko, K.; Schröter, B., Ehrhart polynomials of rank two matroids, Adv. Appl. Math., 141 (2022) · Zbl 1496.52016 · doi:10.1016/j.aam.2022.102410 [20] Ferroni, L., Schröter, B.: Valuative invariants for large classes of matroids (2022). arXiv:2208.04893 [21] Fink, A.; Mészáros, K.; St. Dizier, A., Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., 332, 465-475 (2018) · Zbl 1443.05179 · doi:10.1016/j.aim.2018.05.028 [22] Hanely, D., Martin, J.L., McGinnis, D., Miyata, D., Nasr, G.D., Vindas-Meléndez, A.R., Yin, M.: Ehrhart theory of paving and panhandle matroids (2022). arXiv:2201.12442 · Zbl 1526.05028 [23] Katzman, M., The Hilbert series of algebras of the Veronese type, Commun. Algebra, 33, 4, 1141-1146 (2005) · Zbl 1107.13003 · doi:10.1081/AGB-200053828 [24] Knauer, K.; Martínez-Sandoval, L.; Ramírez Alfonsín, JL, On lattice path matroid polytopes: integer points and Ehrhart polynomial, Discrete Comput. Geom., 60, 3, 698-719 (2018) · Zbl 1494.52014 · doi:10.1007/s00454-018-9965-4 [25] Kohnert, A.: Weintrauben, Polynome, Tableaux. PhD thesis, Universität Bayreuth (1990) · Zbl 0755.05095 [26] Liu, F., On positivity of Ehrhart polynomials, Recent Trends in Algebraic Combinatorics, 189-237 (2019), Cham: Springer, Cham · Zbl 1435.52007 · doi:10.1007/978-3-030-05141-9_6 [27] Monical, C.; Tokcan, N.; Yong, A., Newton polytopes in algebraic combinatorics, Selecta Math., 25, 5, # 66 (2019) · Zbl 1426.05175 · doi:10.1007/s00029-019-0513-8 [28] Murty, U.S.R.: On the number of bases of a matroid. In: 2nd Louisiana Conference on Combinatorics, Graph Theory and Computing (Baton Rouge 1971), pp. 387-410. Louisiana State University, Baton Rouge (1971) · Zbl 0302.05026 [29] Oh, S., Positroids and Schubert matroids, J. Comb. Theory Ser. A, 118, 8, 2426-2435 (2011) · Zbl 1231.05061 · doi:10.1016/j.jcta.2011.06.006 [30] Reiner, V.; Shimozono, M., Key polynomials and a flagged Littlewood-Richardson rule, J. Comb. Theory Ser. A, 70, 1, 107-143 (1995) · Zbl 0819.05058 · doi:10.1016/0097-3165(95)90083-7 [31] Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997) · Zbl 0889.05001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.