×

Twist decomposition of Drell-Yan structure functions: phenomenological implications. (English) Zbl 1373.81374

Summary: The forward Drell-Yan process in pp scattering at the LHC at \( \sqrt{S} = 14 \) TeV is considered. We analyze the Drell-Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small \(x\) gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell-Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat-Wüsthoff model and the dipole cross section obtained from the Balitsky-Fadin-Kuraev-Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell-Yan structure functions for all Drell-Yan pair masses \(M\), and the higher twist effects become important for \(M\) 10GeV. It is found that the structure function \(W_{ TT}\) related to the \(A_{2}\) angular coefficient and the Lam-Tung observable \(A_{0} - A_{2}\) are particularly sensitive to the gluon \(k_{T}\) effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.

MSC:

81V05 Strong interaction, including quantum chromodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.D. Drell and T.-M. Yan, Massive lepton pair production in hadron-hadron collisions at high-energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE]. · Zbl 1390.81643
[2] ATLAS collaboration, Measurement of the low-mass Drell-Yan differential cross section at \[\sqrt{s}=7 \sqrt{s}=7\] TeV using the ATLAS detector, JHEP06 (2014) 112 [arXiv:1404.1212] [INSPIRE]. · Zbl 1390.81643
[3] CMS collaboration, Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV, Eur. Phys. J.C 75 (2015) 147 [arXiv:1412.1115] [INSPIRE].
[4] ATLAS collaboration, Measurement of the Z/γ*boson transverse momentum distribution in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV with the ATLAS detector, JHEP09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
[5] CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett.B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
[6] CMS collaboration, Angular coefficients of Z bosons produced in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV and decaying to μ+μ−as a function of transverse momentum and rapidity, Phys. Lett.B 750 (2015) 154 [arXiv:1504.03512] [INSPIRE].
[7] LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, JHEP08 (2015) 039 [arXiv:1505.07024] [INSPIRE].
[8] LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV, JHEP01 (2016) 155 [arXiv:1511.08039] [INSPIRE].
[9] ATLAS collaboration, Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken at \[\sqrt{s}=8 \sqrt{s}=8\] TeV with the ATLAS detector, JHEP08 (2016) 159 [arXiv:1606.00689] [INSPIRE].
[10] LHCb collaboration, J. Anderson, Constraints on low-x PDFs from Drell Yan processes, and first studies of exclusive dimuon production with the LHCb experiment, in Proceedings of 40thInternational Symposium on Multiparticle Dynamics, (ISMD 2010), Antwerp Belgium September 21-25 2010 [INSPIRE].
[11] K. Golec-Biernat, E. Lewandowska and A.M. Stasto, Drell-Yan process at forward rapidity at the LHC, Phys. Rev.D 82 (2010) 094010 [arXiv:1008.2652] [INSPIRE].
[12] L. Motyka, M. Sadzikowski and T. Stebel, Twist expansion of Drell-Yan structure functions in color dipole approach, JHEP05 (2015) 087 [arXiv:1412.4675] [INSPIRE]. · doi:10.1007/JHEP05(2015)087
[13] A.P. Bukhvostov, G.V. Frolov, L.N. Lipatov and E.A. Kuraev, Evolution equations for quasi-partonic operators, Nucl. Phys.B 258 (1985) 601 [INSPIRE]. · doi:10.1016/0550-3213(85)90628-5
[14] V.M. Braun, A.N. Manashov and J. Rohrwild, Renormalization of twist-four operators in QCD, Nucl. Phys.B 826 (2010) 235 [arXiv:0908.1684] [INSPIRE]. · Zbl 1203.81169 · doi:10.1016/j.nuclphysb.2009.10.005
[15] K.J. Golec-Biernat and M. Wüsthoff, Saturation effects in deep inelastic scattering at low Q2and its implications on diffraction, Phys. Rev.D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].
[16] K.J. Golec-Biernat and M. Wüsthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev.D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE]. · Zbl 1194.81270
[17] J. Bartels, K.J. Golec-Biernat and K. Peters, An estimate of higher twist at small xBand low Q2based upon a saturation model, Eur. Phys. J.C 17 (2000) 121 [hep-ph/0003042] [INSPIRE]. · Zbl 1371.81400
[18] J. Bartels, K. Golec-Biernat and L. Motyka, Twist expansion of the nucleon structure functions, F2and FL, in the DGLAP improved saturation model, Phys. Rev.D 81 (2010) 054017 [arXiv:0911.1935] [INSPIRE].
[19] L. Motyka, M. Sadzikowski and W. Slominski, Evidence of strong higher twist effects in diffractive DIS at HERA at moderate Q2, Phys. Rev.D 86 (2012) 111501 [arXiv:1203.5461] [INSPIRE].
[20] I. Abt, A.M. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wichmann and M. Wing, Study of HERA ep data at low Q2and low xBjand the need for higher-twist corrections to standard perturbative QCD fits, Phys. Rev.D 94 (2016) 034032 [arXiv:1604.02299] [INSPIRE].
[21] L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept.100 (1983) 1 [INSPIRE]. · doi:10.1016/0370-1573(83)90022-4
[22] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP45 (1977) 199 [Zh. Eksp. Teor. Fiz.72 (1977) 377] [INSPIRE]. · Zbl 1203.81169
[23] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys.28 (1978) 822 [Yad. Fiz.28 (1978) 1597] [INSPIRE].
[24] L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept.286 (1997) 131 [hep-ph/9610276] [INSPIRE].
[25] S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys.B 366 (1991) 135 [INSPIRE]. · doi:10.1016/0550-3213(91)90055-3
[26] S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys.B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].
[27] S.J. Brodsky, A. Hebecker and E. Quack, The Drell-Yan process and factorization in impact parameter space, Phys. Rev.D 55 (1997) 2584 [hep-ph/9609384] [INSPIRE].
[28] N.N. Nikolaev and B.G. Zakharov, Color transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys.C 49 (1991) 607 [INSPIRE].
[29] B.Z. Kopeliovich, J. Raufeisen and A.V. Tarasov, The color dipole picture of the Drell-Yan process, Phys. Lett.B 503 (2001) 91 [hep-ph/0012035] [INSPIRE].
[30] B.Z. Kopeliovich, J. Raufeisen, A.V. Tarasov and M.B. Johnson, Nuclear effects in the Drell-Yan process at very high-energies, Phys. Rev.C 67 (2003) 014903 [hep-ph/0110221] [INSPIRE].
[31] F. Gelis and J. Jalilian-Marian, Dilepton production from the color glass condensate, Phys. Rev.D 66 (2002) 094014 [hep-ph/0208141] [INSPIRE].
[32] F. Gelis and J. Jalilian-Marian, Drell-Yan production and Lam-Tung relation in the color glass condensate formalism, Phys. Rev.D 76 (2007) 074015 [hep-ph/0609066] [INSPIRE].
[33] M.B.G. Ducati, M.T. Griep and M.V.T. Machado, Study on the low mass Drell-Yan production at the CERN LHC within the dipole formalism, Phys. Rev.D 89 (2014) 034022 [arXiv:1307.6882] [INSPIRE].
[34] E. Basso, V.P. Goncalves, J. Nemchik, R. Pasechnik and M. Sumbera, Drell-Yan phenomenology in the color dipole picture revisited, Phys. Rev.D 93 (2016) 034023 [arXiv:1510.00650] [INSPIRE].
[35] W. Schäfer and A. Szczurek, Low mass Drell-Yan production of lepton pairs at forward directions at the LHC: a hybrid approach, Phys. Rev.D 93 (2016) 074014 [arXiv:1602.06740] [INSPIRE].
[36] L. Motyka, M. Sadzikowski and T. Stebel, Lam-Tung relation breaking in Z0hadroproduction as a probe of parton transverse momentum, arXiv:1609.04300 [INSPIRE].
[37] E.L. Berger and S.J. Brodsky, Quark structure functions of mesons and the Drell-Yan process, Phys. Rev. Lett.42 (1979) 940 [INSPIRE]. · doi:10.1103/PhysRevLett.42.940
[38] J.-W. Qiu and G.F. Sterman, Power corrections to hadronic scattering. 2. Factorization, Nucl. Phys.B 353 (1991) 137 [INSPIRE]. · Zbl 1194.81270
[39] J.-W. Qiu and G.F. Sterman, Power corrections in hadronic scattering. 1. Leading 1/Q2corrections to the Drell-Yan cross-section, Nucl. Phys.B 353 (1991) 105 [INSPIRE].
[40] A. Brandenburg, S.J. Brodsky, V.V. Khoze and D. Mueller, Angular distributions in the Drell-Yan process: a closer look at higher twist effects, Phys. Rev. Lett.73 (1994) 939 [hep-ph/9403361] [INSPIRE].
[41] K.J. Eskola, P. Hoyer, M. Vanttinen and R. Vogt, Higher twist effects in the Drell-Yan angular distribution, Phys. Lett.B 333 (1994) 526 [hep-ph/9404322] [INSPIRE].
[42] R.J. Fries, B. Müller, A. Schafer and E. Stein, Angular dependence of the nuclear enhancement of Drell-Yan pairs, Phys. Rev. Lett.83 (1999) 4261 [hep-ph/9907567] [INSPIRE].
[43] R.J. Fries, A. Schafer, E. Stein and B. Müller, Nuclear enhanced higher twist effects in the Drell-Yan process, Nucl. Phys.B 582 (2000) 537 [hep-ph/0002074] [INSPIRE]. · Zbl 1203.81169
[44] R. Baier, A.H. Mueller and D. Schiff, Saturation and shadowing in high-energy proton nucleus dilepton production, Nucl. Phys.A 741 (2004) 358 [hep-ph/0403201] [INSPIRE].
[45] L. Motyka and M. Sadzikowski, Twist decomposition of proton structure from BFKL and BK amplitudes, Acta Phys. Polon.B 45 (2014) 2079 [arXiv:1411.7774] [INSPIRE]. · Zbl 1371.81400 · doi:10.5506/APhysPolB.45.2079
[46] S. Marzani and R.D. Ball, High energy resummation of Drell-Yan processes, Nucl. Phys.B 814 (2009) 246 [arXiv:0812.3602] [INSPIRE]. · Zbl 1194.81270 · doi:10.1016/j.nuclphysb.2009.01.029
[47] J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys.B 250 (1985) 199 [INSPIRE]. · doi:10.1016/0550-3213(85)90479-1
[48] J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato and B. Wang, Relating transverse momentum dependent and collinear factorization theorems in a generalized formalism, Phys. Rev.D 94 (2016) 034014 [arXiv:1605.00671] [INSPIRE].
[49] S. Forte and C. Muselli, High energy resummation of transverse momentum distributions: Higgs in gluon fusion, JHEP03 (2016) 122 [arXiv:1511.05561] [INSPIRE]. · doi:10.1007/JHEP03(2016)122
[50] S. Marzani, Combining QTand small-x resummations, Phys. Rev.D 93 (2016) 054047 [arXiv:1511.06039] [INSPIRE].
[51] A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson production, Phys. Rev.D 66 (2002) 014011 [hep-ph/0202251] [INSPIRE].
[52] G. Lustermans, W.J. Waalewijn and L. Zeune, Joint transverse momentum and threshold resummation beyond NLL, Phys. Lett.B 762 (2016) 447 [arXiv:1605.02740] [INSPIRE]. · Zbl 1390.81643 · doi:10.1016/j.physletb.2016.09.060
[53] S. Marzani and V. Theeuwes, Vector boson production in joint resummation, arXiv:1612.01432 [INSPIRE].
[54] C.S. Lam and W.-K. Tung, A systematic approach to inclusive lepton pair production in hadronic collisions, Phys. Rev.D 18 (1978) 2447 [INSPIRE].
[55] C.S. Lam and W.-K. Tung, A parton model relation sans QCD modifications in lepton pair productions, Phys. Rev.D 21 (1980) 2712 [INSPIRE].
[56] J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev.D 16 (1977) 2219 [INSPIRE].
[57] K. Gottfried and J.D. Jackson, On the connection between production mechanism and decay of resonances at high-energies, Nuovo Cim.33 (1964) 309 [INSPIRE]. · doi:10.1007/BF02750195
[58] J. Kwiecinski, A.D. Martin and A.M. Stasto, A unified BFKL and GLAP description of F2data, Phys. Rev.D 56 (1997) 3991 [hep-ph/9703445] [INSPIRE].
[59] LHCb collaboration, Inclusive low mass Drell-Yan production in the forward region at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, conference report for XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn Germany March 26-30 2012, LHCb-CONF-2012-013, CERN, Geneva Switzerland (2012).
[60] T. Stebel, L. Motyka and M. Sadzikowski, Twist expansion of forward Drell-Yan process, Acta Phys. Polon. Supp.8 (2015) 1011 [arXiv:1602.01762] [INSPIRE]. · doi:10.5506/APhysPolBSupp.8.1011
[61] S. Palestini, Angular distribution and rotations of frame in vector meson decays into lepton pairs, Phys. Rev.D 83 (2011) 031503 [arXiv:1012.2485] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.