×

Stable discrete solution of coupled singular mixed partial differential problems. (English) Zbl 0984.65093

Summary: This paper deals with the construction of stable discrete numerical solutions of strongly coupled singular diffusion mixed partial differential problems. After discretization, using a matrix difference scheme, the resulting coupled mixed partial difference problem is treated using a discrete separation of variables method which avoids solving algebraic systems. Existence, stability of solutions, its construction, algorithm and example are given.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argawal R. P., Theory, Methods and Applications (1992)
[2] Camacho J., Appl Sci. Compt. 4 (2) pp 104– (1997)
[3] DOI: 10.1016/S0895-7177(98)00082-X · Zbl 1076.35519 · doi:10.1016/S0895-7177(98)00082-X
[4] Campbell S. L., Generalized Inverses of Linear Transformations (1979) · Zbl 0417.15002
[5] DOI: 10.1137/0124061 · Zbl 0236.35026 · doi:10.1137/0124061
[6] Chiu H. H., Quart. Appl. Math. pp 87– (1969) · Zbl 0176.09001 · doi:10.1090/qam/244596
[7] Courant R., Methods of Mathematical Physics (1962) · Zbl 0099.29504
[8] Dunford N., Linear Operators (1957)
[9] Golub G. H., Matrix Computations (1989) · Zbl 0733.65016
[10] Hodgkin A. L., J. Physiol. 117 pp 500– (1952) · doi:10.1113/jphysiol.1952.sp004764
[11] Jódar L., Rev. Int. Métodos Numer. Cálculo y Dis. en Ing. 7 (3) pp 289– (1991)
[12] DOI: 10.1016/S0898-1221(99)00321-1 · Zbl 0974.65081 · doi:10.1016/S0898-1221(99)00321-1
[13] Jódar L., Int. J. Computers and Math. 73 (2) (1999) · Zbl 0948.65086 · doi:10.1080/00207169908804891
[14] Kee R. J., A differential/algebraic equation formulation of the method- of-lines solution to systems of partial differential equations (1986)
[15] Legua M., Iterative Methods in Linear Algebra pp 395– (1992)
[16] DOI: 10.1002/cpa.3160420206 · Zbl 0664.92007 · doi:10.1002/cpa.3160420206
[17] Mirsky L., An Introduction to Linear Algebra (1990) · Zbl 0766.15001
[18] Ortega J. M., Numerical Analysis, A Second Course (1972)
[19] Ösizik M. N., Finite Difference Methods in Heat Transfer (1994)
[20] Rao C. R., Generalized Inverse of Matrices and its Applications (1971) · Zbl 0236.15004
[21] DOI: 10.1002/fld.1650070703 · Zbl 0639.76112 · doi:10.1002/fld.1650070703
[22] DOI: 10.1002/nag.1610190804 · Zbl 0830.73066 · doi:10.1002/nag.1610190804
[23] Smith G. D., Numerical Solution of Partial Differential equation: Difference Methods (1978)
[24] DOI: 10.1016/S0895-7177(99)00184-3 · Zbl 1042.65546 · doi:10.1016/S0895-7177(99)00184-3
[25] DOI: 10.1142/S0218127497000376 · Zbl 0891.92009 · doi:10.1142/S0218127497000376
[26] DOI: 10.1016/S0079-6107(98)00007-8 · doi:10.1016/S0079-6107(98)00007-8
[27] Wolfram S., The Mathematica book (1996) · Zbl 0878.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.