×

Probabilistic domain decomposition for the solution of the two-dimensional magnetotelluric problem. (English) Zbl 1387.86030

Summary: Probabilistic domain decomposition is proposed as a novel method for solving the two-dimensional Maxwell’s equations as used in the magnetotelluric method. The domain is split into non-overlapping sub-domains and the solution on the sub-domain boundaries is obtained by evaluating the stochastic form of the exact solution of Maxwell’s equations by a Monte-Carlo approach. These sub-domains can be naturally chosen by splitting the sub-surface domain into regions of constant (or at least continuous) conductivity. The solution over each sub-domain is obtained by solving Maxwell’s equations in the strong form. The sub-domain solver used for this purpose is a meshless method resting on radial basis function-based finite differences. The method is demonstrated by solving a number of classical magnetotelluric problems, including the quarter-space problem, the block-in-half-space problem and the triangle-in-half-space problem.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

rbf_qr
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods. SIAM J. Sci. Comput. 27, 440-457 (2005) · Zbl 1091.65002 · doi:10.1137/030600692
[2] Acebrón, J.A., Rodríguez-Rozas, Á., Spigler, R.: Efficient parallel solution of nonlinear parabolic partial differential equations by a probabilistic domain decomposition. J. Sci. Comput. 43, 135-157 (2010) · Zbl 1203.65172 · doi:10.1007/s10915-010-9349-2
[3] Acebrón, J.A., Spigler, R.: A new probabilistic approach to the domain decomposition method. In: Domain Decomposition Methods in Science and Engineering XVI, pp 473-480. Springer (2007)
[4] Bihlo, A., Haynes, R.D.: Parallel stochastic methods for PDE based grid generation. Comput. Math. Appl. 68, 804-820 (2014) · Zbl 1362.65135 · doi:10.1016/j.camwa.2014.07.017
[5] Bihlo, A., Haynes, R.D., Walsh, E.J.: Stochastic domain decomposition for time dependent adaptive mesh generation. J. Math. Study 48, 106-124 (2015) · Zbl 1349.65534 · doi:10.4208/jms.v48n2.15.02
[6] Bossy, M., Champagnat, N., Leman, H., Maire, S., Violeau, L., Yvinec, M.: Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation. ESAIM: Proc. Surv. 48, 420-446 (2015) · Zbl 1339.82009 · doi:10.1051/proc/201448020
[7] Buchmann, F.M.: Simulation of stopped diffusions. J. Comput. Phys. 202, 446-462 (2005) · Zbl 1063.65008 · doi:10.1016/j.jcp.2004.07.009
[8] Chave, A.D., Jones, A.G.: Introduction to the magnetotelluric method. In: Chave, A.D., Jones, A.G. (eds.) The Magnetotelluric Method: Theory and Practice, pp 1-18. Cambridge University Press (2012)
[9] Ding, H., Shu, C., Yeo, K., Xu, D.: Development of least-square-based two-dimensional finite-difference schemes and their application to simulate natural convection in a cavity. Comput. Fluids 33, 137-154 (2004) · Zbl 1033.76039 · doi:10.1016/S0045-7930(03)00036-7
[10] Dolean, V., Gander, M.J., Veneros, E.: Schwarz methods for second order Maxwell equations in 3D with coefficient jumps, Domain Decomposition Methods in Science and Engineering XXII, pp. 471-479. Springer (2016) · Zbl 1342.78043
[11] Farquharson, C.G.: Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73, K1-K9 (2007) · doi:10.1190/1.2816650
[12] Fischer, G., Schnegg, P.A.: The magnetotelluric dispersion relations over 2-D structures. Geophys. J. Int. 115, 1119-1123 (1993)
[13] Fischer, G., Szarka, L., Adam, A.,Weaver, J.: The magnetotelluric phase over 2-D structures. Geophys. J. Int. 108, 778-786 (1992) · Zbl 1371.82041
[14] Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences, vol. 3529. SIAM Press, Philadelphia (2015) · Zbl 1358.86001 · doi:10.1137/1.9781611974041
[15] Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869-892 (2011) · Zbl 1227.65018 · doi:10.1137/09076756X
[16] Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270-2285 (2011) · Zbl 1210.65154 · doi:10.1016/j.jcp.2010.12.014
[17] Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627-637 (2013) · Zbl 1319.65011 · doi:10.1016/j.camwa.2012.11.006
[18] Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl. 87, 167-197 (2000) · Zbl 1045.60082 · doi:10.1016/S0304-4149(99)00109-X
[19] Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, vol. 113 of Graduate Texts in Mathematics. Springer, New York (1991) · Zbl 0734.60060
[20] Lejay, A.: Simulation of a stochastic process in a discontinuous layered medium. Electron. Comm. Probab. 16, 764-774 (2011) · Zbl 1243.60062 · doi:10.1214/ECP.v16-1686
[21] Lejay, A., Maire, S.: Simulating diffusions with piecewise constant coefficients using a kinetic approximation. Comput. Methods Appl. Mech. Eng. 199, 2014-2023 (2010) · Zbl 1231.76241 · doi:10.1016/j.cma.2010.03.002
[22] Lejay, A., Maire, S.: New Monte Carlo schemes for simulating diffusions in discontinuous media. J. Comput. Appl. Math. 245, 97-116 (2013) · Zbl 1307.65004 · doi:10.1016/j.cam.2012.12.013
[23] Lejay, A., Pichot, G.: Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps. J. Comput. Phys. 231, 7299-7314 (2012) · Zbl 1284.65007 · doi:10.1016/j.jcp.2012.07.011
[24] Maire, S., Nguyen, G.: Stochastic finite differences for elliptic diffusion equations in stratified domains, hal-00809203 (2013) · Zbl 07313619
[25] Mascagni, M., Simonov, N.A.: Monte Carlo methods for calculating some physical properties of large molecules. SIAM J. Sci. Comput. 26, 339-357 (2004) · Zbl 1075.65003 · doi:10.1137/S1064827503422221
[26] Milewski, S.: Meshless finite difference method with higher order approximation—applications in mechanics. Arch. Comput. Methods Eng. 19, 1-49 (2012) · Zbl 1354.74313 · doi:10.1007/s11831-012-9068-y
[27] Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763-813 (2008) · Zbl 1152.74055 · doi:10.1016/j.matcom.2008.01.003
[28] Preis, T., Virnau, P., Paul, W., Schneider, J.J.: GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J. Comput. Phys. 228, 4468-4477 (2009) · Zbl 1167.82347 · doi:10.1016/j.jcp.2009.03.018
[29] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge (2007) · Zbl 1132.65001
[30] Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. Oxford University Press, Oxford (1999) · Zbl 0931.65118
[31] Tupper, P.F., Yang, X.: A paradox of state-dependent diffusion and how to resolve it. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468, 3864-3881 (2012) · Zbl 1371.82041 · doi:10.1098/rspa.2012.0259
[32] van Meel, J.A., Arnold, A., Frenkel, D., Portegies Zwart, S.F., Belleman, R.G.: Harvesting graphics power for MD simulations. Mol. Simul. 34, 259-266 (2008) · doi:10.1080/08927020701744295
[33] Vozoff, K.: The magnetotelluric method. In: Nabighian, M. (ed.) Electromagnetic methods in applied geophysics, pp 641-712. Society of Exploration Geophysicists (1991)
[34] Weaver, J.T.: Mathematical methods for geo-electromagnetic induction, vol. 7. Research Studies Press, Baldock (1994) · Zbl 0862.76002
[35] Weiss, C.: The two- and three-dimensional forward problems. In: Chave, A.D., Jones, A.G. (eds.) The Magnetotelluric Method: Theory and Practice, pp 303-346. Cambridge University Press (2012)
[36] Wittke, J., Tezkan, B.: Meshfree magnetotelluric modelling. Geophysical J. Int. 198, 1255-1268 (2014) · doi:10.1093/gji/ggu207
[37] Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99-123 (2006) · Zbl 1089.65020 · doi:10.1016/j.jcp.2005.05.030
[38] Zhdanov, M.S., Varentsov, I.M., Weaver, J.T., Golubev, N.G., Krylov, V.A.: Methods for modelling electromagnetic fields results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction. J. Appl. Geophys. 37, 133-271 (1997) · doi:10.1016/S0926-9851(97)00013-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.