×

zbMATH — the first resource for mathematics

Smooth quasigroups and geometry. (English) Zbl 1267.17040
J. Sov. Math. 51, No. 6, 2642-2666 (1990); translation from Itogi Nauki Tekh., Ser. Probl. Geom. 20, 75–110 (1988).
Summary: We present the basic ideas, concepts, and methods of a new and promising direction that arose at the junction of differential geometry and nonassociative algebra in the 1970s and the 1980s. This direction is naturally called “nonlinear geometric algebra.”

MSC:
17D99 Other nonassociative rings and algebras
20N05 Loops, quasigroups
53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. V. Agazaryan and O. A. Matveev, ?Almost complex geo-odular manifolds,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1987), pp. 4?9. · Zbl 0637.53052
[2] M. A. Akivis, ?The local algebras of a multidimensional three-web,?Sib. Mat. Zh. 17, No. 1, 5?11 (1976). · Zbl 0337.53018
[3] M. A. Akivis, ?Geodesic loops and local triple systems of an affine connection space,?Sib. Mat. Zh. 19, No. 2, 243?253 (1978). · Zbl 0409.53008
[4] M. A. Akivis, ?Differential geometry of webs,?Itogi Nauki Tekhn. Ser. Probl. Geometr. 15, 187?213 (1983).
[5] M. A. Akivis and S. A. Gerasimenko, ?Some closure figures on manifolds with symmetry,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1982), pp. 7?11.
[6] A. D. Aleksandrov, V. N. Berestovskii, and I. G. Nikolaev, ?Generalized Riemannian spaces,?Usp. Mat. Nauk 41, No. 3, 3?44 (1986).
[7] M. Yu. Al’-Khuzheiri, ?Bol algebras generated by spaces of constant curvature,? in:Problems in the Theory of Webs and Quasigroups [in Russian], Kalinin State Univ. (1985), pp. 20?25.
[8] M. Yu. Al’-Khuzheiri, ?Bol algebras of the involutive pairs SU(n+l)/S(U(n) ? U(l)), SP(n+l)/Sp(n) ?Sp(l), and f4/SO(9),? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1987), pp. 10?13.
[9] I. L. Afanas’ev, ?Correspondence between local Lie subgroups of local smooth reductive loops and ideals of their triple Lie algebras,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1984), pp. 15?20.
[10] V. D. Belousov,Foundations of the Theory of Quasigroups and Loops [in Russian], Nauka, Moscow (1967).
[11] D. N. Bulgakov, ?The imbedding of a topological loop in an associated group,? in:Quasigroups and Combinatorics [in Russian], Kishinev (1976), pp. 59?73.
[12] D. N. Bulgakov, ?Conditions for complete regularity of the topological space of continuous loops,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1981), pp. 8?12.
[13] D. N. Bulgakov, ?Imbedding of a topological loop into a group of homeomorphisms of its support,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1982), pp. 25?29.
[14] V. I. Vedernikov, ?A certain special class of homogeneous spaces,?Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 17?22 (1972).
[15] A. T. Gainov, ?Identity relations for binary Lie rings,?Usp. Mat. Nauk 12, No. 3, 141?146 (1957).
[16] A. N. Grishkov, ?An analog of Levi’s theorem for Mal’cev algebras,?Algebra Logika 16, No. 4, 389?396 (1977).
[17] A. N. Grishkov, ?Structure representation of binary Lie algebras,?Izv. Akad. Nauk SSSR, Ser. Mat. 44, No. 5, 999?1030 (1980).
[18] A. N. Grishkov, ?On the existence of global analytic alternative loops,? Preprint No. 510, Computer Center Sib. Branch, Akad. Nauk SSSR (1984).
[19] Kh. M. Karanda, ?On the geometry of symmetric loops,? Candidate’s Dissertation, Fiz.-Mat., Friendship of Nations University (1972).
[20] F. S. Kerdman, ?On analytic Moufang loops in the large,?Dokl. Akad. Nauk SSSR 249, No. 3, 533?536 (1979). · Zbl 0457.22003
[21] F. S. Kerdman, ?Analytic Moufang loops in the large,?Algebra Logika 18, No. 5, 523?555 (1979). · Zbl 0457.22002
[22] F. S. Kerdman, ?The Schreier theorem for analytic Moufang loops,?Algebra Logika 19, No. 3, 284?299 (1980). · Zbl 0466.22003
[23] E. N. Kuz’min, ?Simple Mal’cev algebras over a field of characteristic zero,?Dokl. Akad. Nauk SSSR 181, No. 6, 1324?1326 (1968).
[24] E. N. Kuz’min, ?Mal’cev algebras and their representations,?Algebra Logika 7, No. 4, 48?69 (1968).
[25] E. N. Kuz’min, ?Mal’cev algebras of dimension five over a field of characteristic zero,?Algebra Logika 9, No. 6, 691?700 (1970). · Zbl 0249.17017
[26] E. N. Kuz’min, ?The connection between Mal’cev algebras and analytic Moufang loops,?Algebra Logika 10, No. 1, 3?22 (1971). · Zbl 0248.17001
[27] E. N. Kuz’min, ?Levi theorem for Mal’cev algebra,?Algebra Logika 16, No. 4, 424?431 (1977). · Zbl 0394.17015
[28] A. I. Mal’cev, ?Analytic loops,?Mat. Sb. 36, No. 3, 569?573 (1955).
[29] O. A. Matveev, ?Manifolds with geodesies,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1986), pp. 44?49.
[30] P. O. Matveev, ?The G-property of local analytic Bol loops,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1986), pp. 54?59.
[31] P. O. Matveev, ?On a problem of Cartan,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1987), pp. 76?81.
[32] A. 1. Nesterov and V. A. Stepanenko, ?On methods of nonassociative algebra in geometry and physics,? Preprint No. 400F, Physics Inst., Sib. Branch, Akad. Nauk SSSR (1986).
[33] P. K. Rashevskii, ?On the geometry of homogeneous spaces,?Dokl. Akad. Nauk SSSR 80, 161?171 (1951). · Zbl 0073.16202
[34] P. K. Rashevskii, ?Symmetric affine connection spaces with torsion,?Trudy Sem. Vektor. Tenzor. Anal. 8, 82?92 (1950).
[35] L. V. Sabinin, ?On the geometry of subsymmetric spaces,?Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat., No. 3, 46?49 (1958).
[36] L. V. Sabinin, ?The geometry of trisymmetric Riemannian spaces,?Sib. Mat. Zh. 2, No. 2, 266?278 (1961).
[37] L. V. Sabinin, ?The classification of trisymmetric spaces,?Dokl. Akad. Nauk SSSR 194, No. 3, 518?520 (1970). · Zbl 0215.23401
[38] L. V. Sabinin, ?On the equivalence of categories of loops and homogeneous spaces,?Dokl. Akad. Nauk SSSR 205, No. 3, 533?536 (1972). · Zbl 0291.18006
[39] L. V. Sabinin, ?On the geometry of loops,?Mat. Zametki 12, No. 5, 605?616 (1972). · Zbl 0291.18006
[40] L. V. Sabinin, ?On the geometry of loops,? in:Theses and Reports of the 5th All-Union Scientific Conference on Modern Problems in Differential Geometry, Samarkand, October 20?24, 1972, Samarkand (1972), p. 192.
[41] L. V. Sabinin, ?Odules as a new approach to geometry with a connection,?Dokl. Akad. Nauk SSSR 233, No. 5, 800?803 (1977). · Zbl 0375.53021
[42] L. V. Sabinin, ?Methods of nonassociative algebra in differential geometry,? Appendix to: S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. 1 [Russian translation], Nauka, Moscow (1981), pp. 293?339.
[43] L. V. Sabinin, ?Tangential connections of loopuscular structures,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1986), pp. 86?89.
[44] L. V. Sabinin, ?Geometric odules,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1987), pp. 88?98.
[45] L. V. Sabinin and P. O. Mikheev, ?A symmetric connection in the space of an analytic Moufang loop,?Dokl. Akad. Nauk SSSR 262, No. 4, 807?809 (1982). · Zbl 0495.53048
[46] L. V. Sabinin and P. O. Mikheev, ?Analytic Bol loops,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1985), pp. 72?75.
[47] L. V. Sabinin and P. O. Mikheev, ?On the geometry of smooth Bol loops,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1984), pp. 144?154.
[48] L. V. Sabinin and P. O. Mikheev, ?The differential geometry of Bol loops,?Dokl. Akad. Nauk SSSR 281, No. 5, 1055?1057 (1985). · Zbl 0587.53021
[49] L. V. Sabinin and P. O. Mikheev,The Theory of Smooth Bol Loops [in Russian], Lecture Notes, Lumumba Friendship of Nations Univ., Moscow (1985). · Zbl 0584.53001
[50] L. V. Sabinin and P. O. Mikheev, ?Local analytic loops with right alternativity identity,? in:Problems in Webs and Quasigroups [in Russian], Kalinin State Univ. (1985), pp. 72?75. · Zbl 0572.20056
[51] L. V. Sabinin and P. O. Mikheev, ?On local analytic loops and the hyperalgebras corresponding to them,? in:Materials of the 9th Conference of Young Scientists of Lumumba Friendship of Nations University, Moscow, April 15?19, 1986, Part I, Moscow (1986), pp. 34?54; manuscript No. 6848-V deposited in VINITI, September 25, 1986.
[52] L. V. Sabinin and P. O. Mikheev, ?On the infinitesimal theory of local analytic loops,?Dokl. Akad. Nauk SSSR 297, No. 4, 801?804 (1987). · Zbl 0659.53018
[53] L. V. Sabinin and S. S. Yantranova, ?On the canonical reductants of spaces with constant curvature,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1984), pp. 76?83. · Zbl 0568.53027
[54] L. V. Sbitneva, ?Perfect s-structure,?Differentsial’naya Geom. Mnogoobraz. Figur. 10, 97?103 (1979).
[55] L. V. Sbitneva, ?Lie algebras of perfect s-spaces,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1982), pp. 128?133.
[56] L. V. Sbitneva, ?On the infinitesimal theory of smooth M-loops,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1986), pp. 92?95.
[57] L. A. Skornyakov, ?Toplogical projective planes,?Trudy Moskov. Mat. Obshch. 3, 347?373 (1954).
[58] A. S. Fedenko, ?Regular spaces with symmetries,?Mat. Zametki 14, No. 1, 113?120 (1974). · Zbl 0294.53036
[59] A. S. Fedenko,Spaces with Symmetries [in Russian], Nauka Tekh., Minsk (1977). · Zbl 0463.53034
[60] A. M. Shelekhov, ?Calculation of the covariant derivatives of the curvature tensor of a multidimensional three-web,? in:Webs and Quasigroups [in Russian], Kalinin State Univ. (1986), pp. 96?103.
[61] J. E. d’Atri, ?Connections and symmetry structures,?Tensor 25, 448?450 (1972).
[62] J. E. d’Atri and H. K. Nickerson, ?The existence of special orthonormal frames,?J. Differential Geom. 2, No. 4, 393?409 (1968). · Zbl 0179.50601
[63] A. Barlotti and K. Strambach, ?The geometry of binary systems,?Adv. Math. 49, No. 1, 1?105 (1983). · Zbl 0518.20064
[64] I. A. Batalin, ?Quasigroup construction and first-class constraints,?J. Math. Phys. 22, No. 9, 1837?1856 (1981). · Zbl 0482.22017
[65] R. H. Bruck,A Survey of Binary Systems, 2nd edn., Springer-Verlag, Berlin (1971). · Zbl 0206.30301
[66] I. Burdujan, ?Sur les boucles de Lie-Banach,? in:Proceedings of the Institute of Mathematics Iast (1974), Editura Acad. R.S.R., Bucharest (1976), pp. 23?30.
[67] I. Burdujan, ?Sur une theorème de K. Yamaguti,? in:Proceedings of the Institute of Mathematics Iasi (1974), Editura Acad. R.S.R. Bucharest (1976), pp. 31?35.
[68] I. Burdujan, ?Groupes de transformations dans la théorie des quasigroups,?An. Stunt. Univ. ?Al. I. Cuza? Iasi Sec. I a Mat. A, No. 1, 31?38 (1978).
[69] I. Burdujan, ?Une application des systèmes homogènes de K. Yamaguti dans la géométrie diffiérèntielle,?Bull. Inst. Politehn. Iasi, Sec. 1 25, No. 1?2, 47?49 (1979).
[70] I. Burdujan, ?Observations on the homogeneous systems of K. Yamaguti,?Bull. Inst. Politehn. Iasi, Suppl. Sec. 1, 57?60 (1985). · Zbl 0622.17015
[71] H. Busemann,The Geometry of Geodesies, Academy Press, New York (1955). · Zbl 0112.37002
[72] É. Cartan, ?La géomètrie des groupes de transformations,?J. Math. Pure Appl., Ser. 9 6, 1?119 (1927).
[73] É. Cartan and J. A. Scheuten, ?On Riemannian geometries admitting an absolute parallelism,?Proc. Kon. Ned. Akad. Wetensch. 29, 923?946 (1926). [Reprint in: É. Cartan,Oeuvres Completes, Parte I, Vol. 2, Gauthier-Villars, Paris (1952), pp. 673?692.] · JFM 52.0744.02
[74] J. F. Conn, ?On the structure of real transitive Lie algebras,?Trans. Am. Math. Soc. 286, No. 1, 1?71 (1984). · Zbl 0583.17012
[75] J. R. Faulkner, ?Dynkin diagrams for Lie triple systems,?J. Algebra 62, 384?392 (1980). · Zbl 0425.17007
[76] J. R. Faulkner, ?Identity classification in triple systems,?J. Algebra 94, No. 2, 352?363 (1985). · Zbl 0596.17002
[77] H. Freudenthal, ?Kompakte projective Ebenen,?Illinois J. Math. 1, No. 1, 9?13 (1957).
[78] G. Glauberman, ?On loops of odd order. 1,?J. Algebra 1, No. 4, 374?396 (1964). · Zbl 0123.01502
[79] P. J. Graham and A. J. Ledger, ?Sur une classe de s-variétés riemanniennes ou affinnes,?C. r. Acad. Sci. A267, No. 2, 105?107 (1968). · Zbl 0157.28301
[80] P. J. Graham and A. J. Ledger, ?s-regular manifolds,? in:Differential Geometry in Honor of K. Yano, Tokyo (1972), pp. 133?144.
[81] K. H. Hofmann, ?Topologische loops,?Math. Z. 70, No. 1, 13?37 (1958). · Zbl 0095.02701
[82] K. H. Hofmann,Nonassociative Topological Algebra, Tulane University Lecture Notes (1961).
[83] K. H. Hofmann and K. Strambach, ?Topological and analytic loops,? Preprint No. 869, Technische Hochshule Darmstadt (1985).
[84] K. H. Hofmann and K. Strambach, ?Lie’s fundamental theorems for local analytic loops,?Pacific J. Math. 123, No. 2, 301?327 (1986). · Zbl 0596.22002
[85] J. P. Holmes, ?Differentiale power-associative groupoids,?Pacific J. Math. 41, No. 2, 391?394 (1972). · Zbl 0235.22024
[86] J. P. Holmes, ?Continuous homomorphisms are differentiable,?Proc. Am. Math. Soc. 65, No. 2, 277?281 (1977).
[87] J. P. Holmes and A. A. Sagle, ?Problems in H-spaces and nonassociative algebras,?Kumamoto J. Sci. (Math.) 13, 1?5 (1978/1979).
[88] J. P. Holmes and A. A. Sagle, ?Campbell-Hausdorff formula and alternative algebras,?Pacific J. Math. 91, No. 1, 105?134 (1980). · Zbl 0412.17014
[89] S. N. Hudson, ?Topological loops with invariant uniformities,?Trans. Am. Math. Soc. 109, No. 1, 181?190 (1963). · Zbl 0115.02501
[90] S. N. Hudson, ?Transformation groups in the theory of topological loops,?Proc. Am. Math. Soc. 15, No. 6, 872?877 (1964), Errata, ibid.17, 770 (1966).
[91] S. N. Hudson, ?Lie loops with invariant uniformities, I and II,?Trans. Am. Math. Soc. 115, No. 3, 417?432;118, No. 6, 526?533 (1965). · Zbl 0134.26705
[92] N. Jacobson, ?General representation theory of Jordan algebras,?Trans. Am. Math. Soc. 76, 509?530 (1951). · Zbl 0044.02503
[93] Michihiko Kikkawa, ?On local loops in affine manifolds,?J. Sci. Hiroshima Univ., Ser. A 28, No. 2, 199?207 (1964). · Zbl 0647.53012
[94] Michihiko Kikkawa, ?On locally reductive spaces and tangent algebras,?Mem. Fac. Sci. Shimane Univ. Nat. Sci. 5, 1?13 (1972). · Zbl 0241.53015
[95] Michihiko Kikkawa, ?On some quasigroups of algebraic models of symmetric spaces,?Mem. Fac. Sci. Shimane Univ. Nat. Sci. 7, 29?35 (1974). · Zbl 0279.53046
[96] Michihiko Kikkawa, ?Geometry of homogeneous Lie loops,?Hiroshima Math. J. 5, No. 2, 141?179 (1975). · Zbl 0304.53037
[97] Michihiko Kikkawa, ?A note on subloops of a homogeneous Lie loop and subsystems of its Lie triple algebra,?Hiroshima Math. J. 5, No. 3, 439?446 (1975). · Zbl 0312.53036
[98] Michihiko Kikkawa, ?On homogeneous systems. 1,?Mem. Fac. Sci. Shimane Univ. Nat. Sci. 11, 9?17 (1977). · Zbl 0377.53029
[99] Michihiko Kikkawa, ?On homogeneous systems. 2,?Mem. Fac. Sci. Shimane Univ. Nat. Sci. 12, 5?13 (1978).
[100] Michihiko Kikkawa, ?Remarks on solvability of Lie triple algebras,?Mem. Fac. Sci. Shimane Univ. 13, 17?22 (1979). · Zbl 0425.17006
[101] Michihiko Kikkawa, ?On homogeneous systems. 3 and 4,?Mem. Fac. Sci. Shimane Univ. 14, 41?46 (1980);15, 1?7(1981). · Zbl 0478.53038
[102] Michihiko Kikkawa, ?On Killing-Ricciforms on Lie triple algebras,?Pacific J. Math. 96, No. 1, 153?161 (1981). · Zbl 0475.17001
[103] Michihiko Kikkawa, ?On the decomposition of homogeneous systems with nondegenerate Killing-Riccitensor,?Hiroshima Math. J. 11, 525?531 (1981). · Zbl 0478.53040
[104] Michihiko Kikkawa, ?On the Killing radical of Lie triple algebras,?Proc. Jpn. Acad. Ser. A, Math. Sci. 58, No. 5, 212?215 (1982). · Zbl 0521.17001
[105] Michihiko Kikkawa, ?Remarks on invariant forms of Lie triple algebras,?Mem. Fac. Sci. Shimane Univ. 16, 23?27 (1982). · Zbl 0509.17001
[106] Michihiko Kikkawa, ?On homogeneous systems. 5,?Mem. Fac. Sci. Shimane Univ. 17, 9?13 (1983). · Zbl 0538.53053
[107] Michihiko Kikkawa, ?Naturally reductive metrics on homogeneous systems,?Proc. Kon. Ned. Akad. Wetensch. A87, No. 2, 203?208 (1984). · Zbl 0546.17002
[108] Michihiko Kikkawa, ?Totally geodesic embeddings of homogeneous systems into their enveloping Lie groups,?Mem. Fac. Sci. Shimane Univ. 18, 1?9 (1984). · Zbl 0563.53043
[109] Michihiko Kikkawa, ?Canonical connections of homogeneous Lie loops and 3-webs,?Mem. Fac. Sci. Shimane Univ. 19, 57?59 (1985). · Zbl 0588.53014
[110] Michihiko Kikkawa, ?Remarks on canonical connections of loops with the left inverse property,?Mem. Fac. Sci. Shimane Univ. 20, 9?18 (1986). · Zbl 0625.53047
[111] O. Kowalski, ?Riemannian manifolds with general symmetries,?Math. Z. 136, No. 2, 137?150 (1974). · Zbl 0265.53040
[112] O. Kowalski,Generalized Symmetric Spaces, Springer-Verlag, Berlin-New York (1980). · Zbl 0431.53042
[113] E. N. Kuz’min (E. N. Kuzmine), ?La relation entre les algèbres de Malcev et les boucles de Moufang analytiques,?C. r. Acad. Sci. A271, No. 23, 1152?1155 (1970).
[114] A. J. Ledger, ?Espaces de Riemann symétriques généralisés,?C. r. Acad. Sci. A264, No. 22, 947?948 (1967).
[115] A. J. Ledger and M. Obata, ?Affine and Riemannian s-manifolds,?J. Differential Geom. 2, No. 4, 451?459 (1968). · Zbl 0177.24602
[116] W. G. Lister, ?A structure theory of Lie triple systems,?Trans. Am. Math. Soc. 72, No. 2, 217?242 (1952). · Zbl 0046.03404
[117] O. Loos, ?Über eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen,?Pacific J. Math. 18, No. 3, 553?562 (1966). · Zbl 0145.04202
[118] O. Loos,Symmetrie Spaces, 2 Vols., Benjamin, New York-Amsterdam (1969).
[119] Takayuki Nôno, ?On geodesic subspaces of group spaces,?J. Sci. Hiroshima Univ., Ser. A 21, 167?176 (1958). · Zbl 0083.02201
[120] Takayuki Nôno, ?Sur les familles triples infinitésimales attachées aux familles triples de Lie,?J. Sci. Hiroshima Univ., Ser. A 24, No. 3, 573?578 (1960).
[121] Takayuki Nôno, ?Sur les familles triples locales de transformations locales de Lie,?J. Sci. Hiroshima Univ., Ser. A 25, No. 2, 357?366 (1961). · Zbl 0113.15801
[122] T. S. Ravisankar, ?On Mal’cev algebras,?Pacific J. Math. 42, No. 1, 227?234 (1972). · Zbl 0245.17010
[123] T. S. Ravisankar, ?Some remarks on Lie triple systems,?Kumamoto J. Sci. 11, 1?8 (1974). · Zbl 0367.17006
[124] D. A. Robinson, ?A loop theoretic study of right-sided quasigroups,?Ann. Soc. Sci. Bruxelles Ser. I 93, No. 1, 7?76 (1979). · Zbl 0414.20058
[125] A. A. Sagle, ?Mal’cev algebras,?Trans. Am. Math. Soc. 101, No. 3, 426?458 (1961).
[126] A. A. Sagle, ?Simple Mal’cev algebras over fields of characteristic zero,?Pacific J. Math. 12, No. 3, 1057?1078 (1962). · Zbl 0136.02103
[127] A. A. Sagle, ?On derivations of semisimple Mal’cev algebras,?Portugal. Math. 21, No. 1?2, 107?109 (1962).
[128] A. A. Sagle, ?On anticommutative algebras and general Lie triple systems,?Pacific J. Math. 15, No. 1, 281?291 (1965). · Zbl 0142.27502
[129] A. A. Sagle, ?Remarks on simple extended Lie algebras,?Pacific J. Math. 15, No. 2, 613?620 (1965). · Zbl 0134.27001
[130] A. A. Sagle, ?On simple extended Lie algebras over fields of characteristic zero,?Pacific J. Math. 15, No. 2, 621?648 (1965). · Zbl 0134.26904
[131] A. A. Sagle, ?On simple algebras obtained from homogeneous general Lie triple systems,?Pacific J. Math. 15, No. 4, 1397?1399 (1965). · Zbl 0241.17007
[132] A. A. Sagle, ?On anticommutative algebras and homogeneous spaces,?J. Math. Mech. 16, No. 12, 1381?1393 (1967).
[133] A. A. Sagle, ?A note on simple anticommutative algebras obtained from reductive homogeneous spaces,?Nagoya Math. J. 31, 105?124 (1968). · Zbl 0155.07101
[134] A. A. Sagle, ?A note on triple systems and totally geodesic submanifolds in a homogeneous space,?Nagoya Math. J. 32, 5?20 (1968). · Zbl 0159.51601
[135] A. A. Sagle, ?On homogeneous spaces, holonomy, and nonassociative algebras,?Nagoya Math. J. 32, 373?394 (1968). · Zbl 0159.51503
[136] A. A. Sagle, ?Nonassociative algebras and Lagrangian mechanics on homogeneous spaces,?Algebras Groups Geom. 2, No. 4, 478?494 (1986).
[137] H. Salzmann, ?Topologische projective Ebenen,?Math. Z. 67, No. 5, 436?466 (1957). · Zbl 0078.34103
[138] I. M. Singer and S. Sternberg, ?On infinite groups of Lie and Cartan. I. The transitive groups,?J. Analyse Math. 15, 1?114 (1965). · Zbl 0277.58008
[139] K. Strambach, ?Reguläre idempotente Multiplikationen,?Math. Z. 145, No. 1, 43?62 (1975). · Zbl 0322.57008
[140] K. Strambach, ?Mehrfach scharf transitive Liesche-Moufang loops,?Arch. Math. (Basel) 29, Fasc. 1, 1?19 (1977). · Zbl 0373.57023
[141] G. Tsagas, ?s-manifolds,?Tensor 42, No. 1, 15?24 (1985).
[142] G. Tsagas and A. J. Ledger, ?Riemannian s-manifolds,?J. Differential Geom. 12, No. 3, 333?343 (1977). · Zbl 0389.53023
[143] J. A. Wolf, ?On the geometry and classification of absolute parallelisms. 1 and 2,?J. Differential Geom. 6, 317?342 (1972);7, No. 1?2, 19?44 (1972/1973). · Zbl 0251.53014
[144] Kiyosi Yamaguti, ?On algebras of totally geodesic spaces,?J. Sci. Hiroshima Univ. A21, No. 2, 107?113 (1957/1958). · Zbl 0084.18405
[145] Kiyosi Yamaguti, ?On the Lie triple system and its generalization,?J. Sci. Hiroshima Univ. A21, No. 2, 155?160 (1957/1958). · Zbl 0084.18405
[146] Kiyosi Yamaguti, ?A note on a theorem of N. Jacobson,?J. Sci. Hiroshima Univ. A22, No. 3, 187?190 (1958).
[147] Kiyosi Yamaguti, ?Note on Mal’cev algebras,?Kumamoto J. Sci. (Math.) A5, 203?207 (1962). · Zbl 0281.50015
[148] Kiyosi Yamaguti, ?On the theory of Mal’cev algebras,?Kumamoto J. Sci. (Math.) A6, No. 1, 9?45 (1963). · Zbl 0084.18405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.