×

All the trinomial roots, their powers and logarithms from the Lambert series, Bell polynomials and Fox-Wright function: illustration for genome multiplicity in survival of irradiated cells. (English) Zbl 1406.92284

Summary: All the roots of the general \(n\)th degree trinomial admit certain convenient representations in terms of the Lambert and Euler series for the asymmetric and symmetric cases of the trinomial equation, respectively. Previously, various methods have been used to provide the proofs for the general terms of these two series. Taking \(n\) to be any real or complex number, we presently give an alternative proof using the Bell (or exponential) polynomials. The ensuing series is summed up yielding a single, compact, explicit, analytical formula for all the trinomial roots as the confluent Fox-Wright function \(_1\Psi_1\). Moreover, we also derive a slightly different, single formula of the trinomial root raised to any power (real or complex number) as another \(_1\Psi_1\) function. Further, in this study, the logarithm of the trinomial root is likewise expressed through a single, concise series with the binomial expansion coefficients or the Pochhammer symbols. These findings are anticipated to be of considerable help in various applications of trinomial roots. Namely, several properties of the \(_1\Psi_1\) function can advantageously be employed for its implementations in practice. For example, the simple expressions for the asymptotic limits of the \(_1\Psi_1\) function at both small and large values of the independent variable can be used to readily predict, by analytical means, the critical behaviors of the studied system in the two extreme conditions. Such limiting situations can be, e.g., at the beginning of the time evolution of a system, and in the distant future, if the independent variable is time, or at low and high doses when the independent variable is radiation dose, etc. The present analytical solutions for the trinomial roots are numerically illustrated in the genome multiplicity corrections for survival of synchronous cell populations after irradiation.

MathOverflow Questions:

Series solution for general trinomial

MSC:

92C50 Medical applications (general)
92D10 Genetics and epigenetics
65H04 Numerical computation of roots of polynomial equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.H. Lambert, Observationes varie in mathesin puram. Acta Helvetica, Physico-mathematico-anatomico-botanico-medica, Basel 3, 128-168 (1758). http://www.kuttaka.org/ JHL/L1758c.pdf
[2] J.H. Lambert, Observationes analitiques. Nouveaux mémoires de l’académie royale des sciences et belle-lettres, Berlin 1, 225-244 (1770)
[3] L. Euler, Deformulis exponentialibus replicatis. Reprinted in Leonhard Euleri Opera Omnia, Ser. Prima, Opera Mathematica 15, 268-297 (1927) (original publication year: 1777)
[4] L. Euler, De serie Lambertina plurimisque eius insignibus proprietatibus. Acta Academiae Scientarum Imperialis Petropolitinae 2, 29-51 (1783) (original publication year: 1773); reprinted in L. Euler, Opera Omnia, Series Prima, in Commentationes Algebraicae (Teubner, Leipzig, Germany, 1921), 6, 350-369 (1921). http://math.dartmouth.edu/ euler.docs/originals/E532.pdf
[5] C.F. Gauss, Résolution numérique des équations trinomes. Nouv. Ann. Math. 10, 165-174 (1851)
[6] J. Cockle, Sketch of a theory of transcendental roots. Philos. Mag. 20, 145-148 (1860)
[7] J. Cockle, On transcendental and algebraic solution—supplemental paper. Philos. Mag. 13, 135-139 (1862)
[8] R. Harley, On the theory of the transcendental solution of algebraic equations. Q. J. Math. 5, 337-361 (1862)
[9] E. McClintock, An essay on the calculus of enlargement. Am. J. Math. 2, 101-161 (1879) · JFM 11.0196.02
[10] E. McClintock, Theorems in the calculus of enlargement. Am. J. Math. 17, 69-80 (1895) · JFM 26.0312.01
[11] E. McClintock, A method for calculating simultaneously all the roots of an equation. Am. J. Math. 17, 89-110 (1895) (this and the preceding paper have been read at the 1st summer meeting of the American Mathematical Society (August 14 and 15, 1894)) · JFM 26.0126.01
[12] T.S. Fiske, The summer meeting of the American Mathematical Society. Bull. Am. Math. Soc. 1-6 (October 1894) (here, pages 2-4 review the above-cited 2 McClintock’s papers that, as stated, have been read at the 1st summer meeting of the American Mathematical Society (August 14 and 15, 1894) and subsequently published in Am. J. Math. (op. cit.))
[13] S. Günther, Eine didaktisch wichtige auflösung trinomischer gleichungen. Z. Math. Naturwiss. Unterr. 11, 68-72 (1880)
[14] S. Günther, Eine didaktisch wichtige auflösung trinomischer gleichungen. Z. Math. Naturwiss. Unterr. 11, 267-267 (1880)
[15] J.J. Astrand, On en ny methode for losning af trinomiske ligninger af \[n^{\rm te}\] nte grad. Arch. Math. Naturvidenskab Oslo 6, 448-459 (1881) · JFM 13.0078.01
[16] W. Heymann, Über die auflösung der allgemeinen trinomischen gleichung \[t^n+at^{n-s}+b=0.\] tn+atn-s+b=0. Z. Math. Phys. 31, 223-240 (1886) · JFM 18.0068.02
[17] W. Heymann, Theorie der trinomische gleichungen. Math. Ann. 28, 61-80 (1887) · JFM 18.0068.01
[18] P. Nekrassoff, Ueber trinomische gleichungen. Math. Ann. 29, 413-430 (1887) · JFM 19.0085.02
[19] P. Bohl, Zur theorie der trinomischen gleichungen. Math. Ann. 65, 556-566 (1908) · JFM 39.0134.01
[20] P.A. Lambert, On the solution of algebraic equations in infinite series. Proc. Am. Math. Soc. 14, 467-477 (1908) · JFM 39.0125.02
[21] Hj. Mellin, Zur theorie der trinomischen gleichungen. Ann. Acad. Sci. Fenn. Ser. A 7(7), 32-73 (1915) · JFM 45.0681.02
[22] Hj. Mellin, Ein allgemeiner satz über algebraische gleichungen. Ann. Acad. Sci. Fenn. 7(8), 1-33 (1915) · JFM 45.0682.01
[23] R. Birkeland, Résolution de l’équation algébrique trinome par des fonctions hypergéométriques supérieurs. Comptes Rendus Acad. Sci. Paris 171, 778-781 (1920) · JFM 47.0331.05
[24] R. Birkeland, Résolution de l’équation algébrique genérale par des fonctions hypergéométriques des plusieurs variables. Comptes Rendus Acad. Sci. Paris 171, 1370-1372 (1920) · JFM 47.0331.07
[25] R. Birkeland, Résolution de l’équation algébrique genérale par des fonctions hypergéométriques des plusieurs variables. Comptes Rendus Acad. Sci. Paris 172, 309-311 (1921) · JFM 48.1239.02
[26] R. Birkeland, Über die auflösung algebraischer gleichungen durch hypergeometrische funktionen. Math. Z. 26, 1047-1049 (1927) · JFM 53.0332.03
[27] G. Belardinelli, L’equazione differenziale risolvente della equazione trinomia. Rend. Circ. Mat. Palermo 46, 463-472 (1922) · JFM 48.1138.02
[28] G. Belardinelli, Risoluzione analitica delle equazioni algebriche generali. Rendic. Semin. Matem. Fis. Milano 29, 13-45 (1959) · Zbl 0100.25406
[29] J. Egerváry, On the trinomial equation. Math. Phys. Lapok 37, 36-57 (1930)
[30] A.J. Kempner, Über die separation komplexer wurzeln. Math. Ann. 85, 49-59 (1922) · JFM 48.0088.03
[31] A.J. Kempner, On the separation and computation of complex roots of algebraic equations. Univ. Colo. Stud. 16, 75-87 (1928)
[32] A.J. Kempner, On the complex roots of algebraic equations. Bull. Am. Math. Soc. 41, 809-84 (1935)
[33] A.J. Lewis, The solutions of algebraic equations with one unknown quantity by infinite series. Ph.D. thesis, University of Colorado (1932, unpublished)
[34] A.J. Lewis, The solution of algebraic equations by infinite series. Natl. Math. Mag. 10, 80-95 (1935) · JFM 61.1010.02
[35] A. Eagle, Series for all the roots of a trinomial equation. Am. Math. Mon. 46, 422-425 (1939) · JFM 65.1119.01
[36] A. Eagle, Series for all the roots of the equation \[(z-a)^m=k(z-b)^n\](z-a)m=k(z-b)n. Am. Math. Mon. 46, 425-428 (1939) · JFM 65.1118.05
[37] A.J. Kempner, Two reviews of the preceding 2 Eagle’s papers. Math. Rev. 1(1), 1-1 (1940)
[38] N.A. Hall, The solution of the trinomial equation in infinite series by the method of iteration. Natl. Math. Mag. 15, 219-229 (1941) · JFM 67.0440.02
[39] L. Hibbert, Résolution des équations algébriques de la forme \[z^n =z-a\] zn=z-a. Comptes Rendus Acad. Sci. Paris 206, 229-231 (1938) · JFM 64.0327.02
[40] L. Hibbert, Résolution des équations \[z^n = z-a\] zn=z-a. Bull. Sci. Math. 63, 21-50 (1941) · JFM 67.0267.02
[41] H. Fell, The geometry of zeros of trinomial equations. Rend. Circ. Mat. Palermo 29, 303-336 (1980) · Zbl 0476.30006
[42] G. Boese, Einschlüsse und trennung der nullstellen von exponentialtrinomen. Z. Angew. Math. Mech. 62, 547-560 (1982) · Zbl 0502.30005
[43] J.D. Nulton, K.B. Stolarsky, Zeros of certain trinomials. Comptes Rendus Math. Rep. Acad. Sci. Can. 6, 243-248 (1984) · Zbl 0558.30006
[44] K. Dilcher, J.D. Nulton, K.B. Stolarsky, The zeros of a certain family of trinomials. Glasg. Math. J. 34, 55-74 (1992) · Zbl 0751.30007
[45] I.S. Moskowitz, A.R. Miller, Simple timing channels, in Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy (Oakland, CA, USA, May 16-18, 1994), pp. 56-64
[46] A.R. Miller, I.S. Moskowitz, Reduction of a class of Fox-Wright \[\Psi\] Ψ functions for certain rational parameters. Comput. Math. Appl. 30, 73-82 (1995) · Zbl 0839.33003
[47] D.V. Chudnovsky, G.V. Chudnovsky, Classification of hypergeometric identities for \[\pi\] π and other logarithms of algebraic numbers. Proc. Natl. Acad. Sci. USA 95, 2744-2749 (1998) · Zbl 0966.11050
[48] P.G. Szabó, On the roots of the trinomial equation. Cent. Eur. J. Oper. Res. 18, 97-104 (2010) · Zbl 1204.65001
[49] T. Theobald, T. de Wolff, Norms of roots of trinomials. Math. Ann. 366, 219-247 (2016) · Zbl 1379.12002
[50] F. Wang, Proof of a series solution for Euler’s trinomial equation. ACM Commun. Comput. Algebra 50, 136-144 (2016) · Zbl 1370.33022
[51] V. Botta, Roots of some trinomial equations. Proc. Ser. Braz. Soc. Appl. Comput. Math. 5(1), 10024 (2017). https://doi.org/10.5540/03.2017.005.01.0024
[52] M.A. Brilleslyper, L.E. Schaubroeck, Counting interior roots of trinomials. Math. Mag. 91, 142-150 (2018) · Zbl 1407.30001
[53] E.T. Bell, Exponential polynomials. Ann. Math. 35, 258-277 (1934) · Zbl 0009.21202
[54] E.M. Wright, On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 8, 71-79 (1933) · JFM 59.0383.01
[55] E.M. Wright, The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. 38, 257-270 (1935) · JFM 60.0306.02
[56] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 10, 287-293 (1935)
[57] E.M. Wright, The generalized Bessel function of order greater than one. Q. J. Math. Oxf. 11, 36-48 (1940) · JFM 66.0322.01
[58] C. Fox, The \[G\] G and \[HH\] functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395-429 (1961) · Zbl 0096.30804
[59] C.F. Faà di Bruno, Sullo sviluppo delle funzioni. Ann. Sci. Mat. Fis. 6, 479-480 (1855)
[60] C.F. Faà di Bruno, Note sur une nouvelle formule de calcul différentiel. Q. J. Pure Appl. Math. 1, 359-360 (1857)
[61] W.P. Johnson, The curious history of Faà di Bruno’s formula. Am. Math. Mon. 109, 217-234 (2002) · Zbl 1024.01010
[62] J. Riordan, Derivatives of composite functions. Bull. Am. Math. Soc. 52, 664-667 (1946) · Zbl 0063.06505
[63] J. Riordan, An Introduction to Combinatorial Analysis (Princeton University Press, Princeton, 1978)
[64] R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, 383-414 (1999) · Zbl 1027.33006
[65] A.A. Kilbas, M. Saigo, J.J. Trujillo, On the generalized Wright function. Fract. Calc. Appl. Anal. 5, 437-460 (2002) · Zbl 1027.33015
[66] T. Craven, G. Csordas, The Fox-Wright functions and Laguerre multiplier sequences. J. Math. Anal. Appl. 314, 109-125 (2006) · Zbl 1081.30030
[67] F. Mainardia, G. Pagninib, The role of the Fox-Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 207, 245-257 (2007)
[68] L. Michaelis, M.L. Menten, Die kinetik der invertinwirkung. Biochem. Z. 49, 333-369 (1913) (English translation by R.S. Goody and K.A. Johnson, The kinetics of invertase action. Biochem. 50, 8264-8269 (2011); Supporting Information: The full text (34 pp) of the German to English translation of the original paper by Michaelis and Menten (1913, op. cit.) available at: http://pubs.acs.org)
[69] G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem. J. 19, 338-339 (1925)
[70] M. Merriman, The solutions of equations, in Mathematical Monographs (Willey, New York, 1906, Fourth edn. enlarged), ed. by M. Merriman, R.S. Woodward, no. 10 (First edn. 1896). http://www23.us.archive.org/stream/solutionofequati00merruoft#page/38/mode/1up · JFM 37.0110.08
[71] G. Pólya, G. Szegő, Aufgaben und Lehrsätze der Analysis (Springer, Berlin, 1925); English translation: G. Pólya, G. Szegő, Problems and Theorems in Analysis (Springer, Berlin, 1998)
[72] N.I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953)
[73] G. Belardinelli, Fonctions Hypergéometric de Plusieurs Variables et Résolution Analytiques des Équations Algébraic Genérales (Gauthier-Villars, Paris, 1960)
[74] N.G. de Bruijn, Asymptotic Methods in Analysis, 2nd edn. Bibliotheca Mathematica, vol. 4 (North-Holland Publishing Company, Amsterdam, 1961) · Zbl 0109.03502
[75] R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge University Press, Cambridge, 1999)
[76] R.P. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge University Press, Cambridge, 2001)
[77] D.E. Knuth, Selected Papers on the Analysis of Algorithms (Stanford University Press, Paolo Alto, 2000)
[78] D.E. Knuth, Selected Papers on Discrete Mathematics (CSLI Publications, Stanford, 2003) (CSLI: Center for the Study of Language and Information)
[79] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions (Cambridge Mathematical Library Series, 2004; Reprinted from 1996) (First edn. Cambridge University Press, Cambridge, 1902)
[80] A. Etheridge, Some Mathematical Models for Population Genetics. Lecture Notes, Springer, École d’Été de Probabilités de Saint-Flour, 39 (2009) [39th Probability Summer School held in Saint-Flour]
[81] S. Yi, P.W. Nelson, A.G. Ulsoy, Time Delay Systems: Analysis and Control Using the Lambert W Function (World Scientific Press, London, 2010). Supplementary material: http://www-personal.umich.edu/ ulsoy/TDS-Supplement.htm · Zbl 1209.93002
[82] R.M. Corless, N. Fillion, A Graduate Introduction to Numerical Methods (Springer, New York, 2013)
[83] P.M. Pardalos, T.M. Rassias (eds.), Contributions in Mathematics and Engineering in Honor of Constantin Carathéodory (Springer, Berlin, 2016)
[84] A.E. Dubinov, I.D. Dubinova, S.K. Saikov, The Lambert \[WW\]-function and its applications to mathematical problems of physics (The Russian Federal Nuclear Center, Sarov, Russia, 2006), pp. 1-160 (in Russian)
[85] R. Roy, F.W.J. Olver, Elementary functions, in NIST Handbook of Mathematical Functions (NIST: National Institute of Standards and Technology]) ed. by F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (NIST & Cambridge University Press, Cambridge, New York, 2010) (Electronic version available at http://dlmf.nist.gov), Chapter 4, Sections 4.13: p. 111, 4.45(iii): p. 132
[86] H. Shinozaki, Lambert \[WW\] approach to stability and stabilization problems for linear time-delay systems. Ph.D. thesis, Kyoto Institute of Technology, Kyoto, Japan (2007)
[87] K.M. Pietarila, Developing and automating time delay system stability analysis of dynamic systems using the matrix Lambert function \[WW\] (MLF) method. Ph.D. thesis, University of Missouri-Colombia, USA (2008)
[88] V. Letort, Adaptation du modèle de croissance GreenLab aux plantes à architecture complexe et analyse multi-échelle des relations source-puits pour l’identification paramétrique. Ph.D. thesis, École Centrale des Arts et des Manufactures, “École Centrale Paris” (2008)
[89] S. Yi, Time-delay systems: analysis and control using the Lambert \[WW\] function. Ph.D. thesis, University of Michigan, Michigan, USA (2009)
[90] L. Wetzel, Effect of distributed delays in systems of coupled phase oscillators. Ph.D. thesis, Max Planck Institute of Complex Systems (Dresden, Germany, 2012)
[91] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert \[WW\] function. Adv. Comput. Math. 5, 329-359 (1996) · Zbl 0863.65008
[92] J.M. Borwein, R.M. Corless, Emerging tools for experimental mathematics. Am. Math. Mon. 106, 889-909 (1999) · Zbl 0980.68146
[93] Corless, RM; Jeffrey, DJ; Higham, NJ (ed.); Dennis, M. (ed.); Glendinning, P. (ed.); Martin, P. (ed.); Santosa, F. (ed.); Tanner, J. (ed.), The Lambert \[WW\] Function, 151-155 (2015), Princeton
[94] D.V. Chudnovsky, G.V. Chudnovsky, Generalized hypergeometric functions—classification of identities and explicit rational approximations, in Algebraic Methods and q-Special Functions, ed. by J.F. Van Diejen, L. Vinet, CRM Proceedings and Lecture Notes. https://doi.org/10.1090/crmp/022/03 (American Mathematical Society, Providence, RI, 1999), Vol. 22, pp. 59-91 · Zbl 0943.33004
[95] T.D. Lamb, E.N. Pugh Jr., Phototransduction, dark adaptation, and rhodopsin regeneration (the Proctor lecture). Inv. Opht. Vis. Sci. 47, 5138-5152 (2006)
[96] A.E. Dubinov, I.D. Dubinova, S.K. Saikov, The Lambert W-function and its applications to mathematical problems of physics (The Russian Federal Nuclear Center, Sarov, Russia, 2006), pp. 1-160 (in Russian)
[97] P.B. Brito, F. Fabião, A. Staubyn, Euler, Lambert, and the Lambert \[WW\] function today. Math. Sci. 33, 127-133 (2008) · Zbl 1159.33306
[98] M. Goličnik, On the Lambert \[WW\] function and its utility in biochemical kinetics. Biochem. Eng. J. 63, 116-123 (2012)
[99] T.P. Dance, A brief look into the Lambert \[WW\] function. Appl. Math. 4, 887-892 (2013)
[100] Swati Sharma, P. Shokeen, B. Saini, S. Sharma Chetna, J. Kashyap, R. Guliani, Sandeep Sharma, U.M. Khanna, A. Jain, A. Kapoor, Exact analytical solutions of the parameters of different generation real solar cells using Lambert \[W-W\]-function: a review article. Int. J. Renew. Energy 4, 155-194 (2014)
[101] Dž Belkić, K. Belkić, Mechanistic radiobiological models for repair of cellular radiation damage. Adv. Quantum Chem. 70, 43-143 (2015)
[102] Dž Belkić, The Euler \[T\] T and Lambert \[WW\] functions in mechanistic radiobiological models with chemical kinetics for repair of irradiated cells. J. Math. Chem. 56, 2133-2193 (2018) · Zbl 1401.92088
[103] J. Lehtonen, The Lambert W function in ecological and evolutionary models. Methods Ecol. Evol. 2016(7), 1110-1118 (2016)
[104] Katsimpiri, C.; Nastou, PE; Pardalos, PM; Stamation, YC; Pardalos, PM (ed.); Rassias, TM (ed.), The ubiquitous Lambert \[WW\] function and its classes in sciences and engineering, 323-342 (2016), Berlin
[105] V. Barsan, Siewert solutions of the transcendental equations, generalized Lambert functions and physical applications. Open Phys. 16, 232-242 (2018)
[106] Int. Workshop, “Celebrating 20 years of the Lambert <InlineEquation ID=”IEq376“> <EquationSource Format=”TEX“>\[W\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> W function”, Western University, London, Ontario, Canada (July 25-28, 2016). http://www.apmaths.uwo.ca/ djeffrey/LambertW/LambertW.html
[107] Meeting on the Lambert \[WW\] function and other special functions in optimization and analysis, The 7th Seminar on optimization and variational analysis (Alicante, Spain, June 1-3, 2016)
[108] C.E. Siewert, Publications list. https://www.ces.math.ncsu.edu/publist.html (2017)
[109] K. Briggs, \[WW\]-ology, or some exactly solvable growth models. http://keithbriggs.info/W-ology.html, http://morebtexact.com/people/briggsk2/W-ology.html (1999)
[110] R.N. Corless, D.J. Jeffrey, Still, more fun results on the Lambert \[WW\] function. Maple Document. https://www.maplesoft.com/applications/view.aspx?sid=4204&view=html (2002)
[111] C. Moler, Cleve’s corner: Cleve Moler on mathematics and computing; the Lambert \[WW\] function. Matlab program \[{\rm Lambert}\_W.{\rm m}\] Lambert_W.m. https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function (2013)
[112] E.W. Weisstein, Lambert \[WW\]-function. From mathworld—a Wolfram web resource. http://mathworld.wolfram.com/LambertW-Function.html (2016)
[113] J.M. Borwein, S.B. Lindstrom, The Lambert function in optimization. https://carma.newcastle.edu.au/jon/WinOpt.pdf/LambertWPresentation.pdf
[114] J.M. Borwein, CARMA (Computer assisted research mathematics and its applications priority). https://carma.newcastle.edu.au
[115] F. Johansson, A FLINT (Fast library for number theory) example: Lambert \[WW\] function power series. https://fredrik-j.blogspot.com/2011/03/flint-example-lambert-w-function-power.html
[116] F. Johansson, Arbitrary precision computations of the Lambert functions, numerical quadratures, etc. http://arblib.org/ (2017)
[117] G.M. Goerg, I did it the Lambert way. www.gmge.org/i-did-it-the-lambert-way/ (2010)
[118] WikipediA, https://en.wikipedia.org/wiki/Talk:Lambert_W_function
[119] RDdocumentation. https://www.rdocumentation.org/packages/emdbook/versions/1.3.10/topics/lambertW
[120] Support: Online Help (Mathematics, Special Functions), The Lambert \[WW\] function. https://www.maplesoft.com/support/help/maple/view.aspx?path=LambertW · Zbl 0235.65001
[121] R.N. Corless, Poster: The Lambert \[WW\] function. http://www.orcca.on.ca/LambertW (1996)
[122] A. Braun, Poster: Lambert’s \[W-W\]-function in physics & Engineering. https://www.researchgate.net/publication/279963060_Lambert_W-Function_in_Physics_Engineering_Swiss_Physical_Society_2007, https://doi.org/10.13140/RG.2.1.2574.1927, Contribution to Euler’s Tercentinary 2007, Swiss Physical Society (2007)
[123] F.N. Fritsch, R.E. Shafer, W.P. Crowley, Algorithm 443: solution of the transcendental equation \[w{\rm e}^w=x\] wew=x. Commun. ACM 16, 123-124 (1973)
[124] D.A. Barry, P.J. Culligan-Hensley, S.J. Barry, Real values of the W-function. Assoc. Comput. Machin. Trans. Math. Softw. 21, 161-171 (1995) · Zbl 0886.65010
[125] D.A. Barry, S.J. Barry, P.J. Culligan-Hensley, Algorithm 743: WAPR: A FORTRAN routine for calculating real values of the \[WW\]-function. Assoc. Comput. Machin. Trans. Math. Softw. 21, 172-181 (1995) · Zbl 0886.65011
[126] D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, F. Stagnitti, Analytical approximations for real values of the Lambert \[WW\] function. Math. Comput. Simul. 53, 95-103 (2000)
[127] D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, Arprec: an arbitrary precision computation package. http://crd.lbl.gov/ dhbailey/dhbpapers/arprec.pdf, http://crd.lbl.gov/dhbailey/mpdist (2002)
[128] D.H. Bailey, High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7, 54-61 (2005)
[129] P. Getreuer, Program lambertw.m. Matlab Central File Exchange (2005)
[130] P. Getreuer, D. Clamond. http://www.getreuer.info/home/lambertw
[131] D. Verebič, Having fun with Lambert \[W(x)W\](x) function. arXiv:1003.1628v1 [cs.MS] (2010)
[132] D. Veberič, Lambert \[WW\] function for applications in physics. Comput. Phys. Comm. 183, 2622-2628 (2012) (open source in C++, http://cpc.cs.qub.ac.uk/summaries/AENC_v1_0.html)
[133] W. Gautschi, The Lambert \[WW\]-functions and some of their integrals: a case study for high-precision computations. Numer. Algorithm 57, 27-34 (2011) · Zbl 1215.65042
[134] P.W. Lawrence, R.M. Corless, D.J. Jeffrey. Algorithm 917: complex double-precision evaluation of the Wright \[\omega\] ω function. ACM Trans. Math. Softw. 38, Art. 20 (2012). http://doi.acm.org/10.1145/2168773.2168779 · Zbl 1365.65049
[135] A.D. Horchler, Complex double-precision evaluation of the Wright omega function, a solution of W+LOG(W) = Z. GitHub, Inc. (US): Git-Respiratory Hosting Service, Microsoft Corporation (from October 2018). https://github.com/horchler/wrightOmegaq, Matlab program wrightOmegaq.m, Version 1.0, 3-12-13 (2013)
[136] T. Fukushima, Precise and fast computation of Lambert \[WW\]-functions without transcendental function evaluations. J. Comput. Appl. Math. 244, 77-89 (2013) · Zbl 1260.65013
[137] Z.L. Krougly, D.J. Jeffrey, Implementation and application of extended precision in Matlab. Math. Meth. Appl. Comput. Proc. 11th Int. Conf. Math. Meth. Comput. Techn. Electr. Eng. (Athens, 28-30 September, 2009), pp. 103-108
[138] A. Adler, Lambert \[WW\]-function (lam \[WW\]-package, lambertW). CRAN—Package lamW, free to download: lamW_1.3.0.tar.gz, https://cran.r-project.org/web/packages/lamW/index.html, https://CRAN.R-project.org/package=lamW, https://bitbucket.org/aadler/lamw (2017)
[139] F. Johansson, Computing the Lambert \[WW\] function in arbitrary-precision complex interval arithmetic. HAL (Arhives-Ouvertes.fr), http://hal.inria.fr/hal-01519823 (2017), http://arblib.org/, arXiv:1705:03266v1 [cs.MS]; https://arxiv.org/pdf/1705.03266.pdf (2017)
[140] F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. http://dx.doi.org/10.1109/TC.2017.2690633 (2017) · Zbl 1388.65037
[141] F. Johansson, L. Blagouchine, Computing Stieltjes constants using complex integrations. arXiv:804.01679v2 [math.CA] (2018) · Zbl 1460.11151
[142] F. Johansson, Numerical integration in arbitrary-precision ball arithmetic. arXiv:1802.07942 (2018) · Zbl 1397.65342
[143] J.P. Body, Global approximation of the principal real-valued branch of the Lambert \[WW\] function. Appl. Math. Lett. 11, 27-31 (1998)
[144] S. Winitzki, Uniform approximations for transcendental functions, in Lecture Notes in Computer Science, no. 2667, ed. by V. Kumar, M.L. Gavrilova, C.J.K. Tan, P. L’ Ecuyer (Springer, Berlin, 2003), pp. 780-789
[145] K. Roberts, A robust approximation to a Lambert-type function. arXiv:1504.01964v1 [math.NA] (2015)
[146] R. Iacono, J.P. Boyd, New approximations to the principal real-valued branch of the Lambert \[WW\]-function. Adv. Comput. Math. 43, 1403-1436 (2017) · Zbl 1381.33020
[147] E.M. Wright, The linear difference-differential equation with constant coefficients. Proc. R. Soc. Edinb. A 62, 387-393 (1949)
[148] E.M. Wright, A non-linear difference-differential equation. J. Reine Angew. Math. 194, 66-87 (1955) · Zbl 0064.34203
[149] E.M. Wright, Solution of the equation \[z{\rm e}^z=a\] zez=a. Proc. R. Soc. Edinb. A 65, 193-203 (1959)
[150] C.E. Siewert, E.E. Burniston, An exact analytical solution of Keplers equation. Celest. Mech. 6, 294-304 (1972) · Zbl 0251.70011
[151] E.E. Burniston, C.E. Siewert, The use of Riemann problems in solving a class of transcendental equations. Proc. Camb. Philos. Soc. 73, 111-118 (1973) · Zbl 0253.30032
[152] C.E. Siewert, An exact analytical solution of an elementary critical condition. Nucl. Sci. Eng. 51, 78-79 (1973)
[153] C.E. Siewert, E.E. Burniston, On a critical condition. Nucl. Sci. Eng. 52, 150-151 (1973)
[154] E.E. Burniston, C.E. Siewert, Exact analytical solution of the transcendental equation \[a \sin{\zeta } = \zeta\] asinζ=ζ. SIAM J. Appl. Math. 4, 460-465 (1973) · Zbl 0271.33002
[155] C.E. Siewert, C. Essig, An exact solution of a molecular field equation in the theory of ferromagnetism. J. Appl. Math. Phys. 24, 281-286 (1973)
[156] C.E. Siewert, E.E. Burniston, Exact analytical solution of \[z{\rm e}^z=a\] zez=a. J. Math. Anal. Appl. 73, 626-632 (1973) · Zbl 0271.33003
[157] C.E. Siewert, A.R. Burkart, On double zeros of \[x = {{\rm tanh}} (ax + b)\] x=tanh(ax+b). J. Appl. Math. 24, 435-439 (1973) · Zbl 0262.26002
[158] C.E. Siewert, Solutions of the equation \[z{\rm e}^z = a (z + b)\] zez=a(z+b). J. Math. Anal. Appl. 46, 329-337 (1974) · Zbl 0283.33001
[159] C.E. Siewert, E.E. Burniston, An exact analytical solution for the position-time relationship for an inverse-distance-squared force. Int. J. Eng. Sci. 12, 861-863 (1974)
[160] C.E. Siewert, E.E. Burniston, An exact analytical solution of \[x\, {{\rm coth}} x = \alpha x^2 + 1\] xcothx=αx2+1. J. Comput. Appl. Math. 2, 19-26 (1976)
[161] C.E. Siewert, Explicit results for the quantum-mechanical energy states basic to a finite square-well potential. J. Math. Phys. 19, 434-435 (1978)
[162] C.E. Siewert, J.S. Phelps III, On solutions of a transcendental equation basic to the theory of vibrating plates. SIAM J. Math. Anal. 10, 105-108 (1979)
[163] C.E. Siewert, J.S. Phelps, Explicit solutions of \[a\, {{\rm tan}} (\xi k\pi ) + {{\rm tanh}}\xi = 0\] atan(ξkπ)+tanhξ=0. J. Comput. Appl. Math. 5, 99-103 (1979)
[164] C.E. Siewert, An exact expression for the Wien displacement constant. J. Quant. Spectr. Radiat. Transf. 26, 467-467 (1981)
[165] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, Lambert’s \[WW\] function in Maple. Maple Tech. Newslett. 9, 12-22 (1993). http://www.orcca.on.ca/LambertW
[166] D.J. Jeffrey, R.M. Corless, D.E.G. Hare, D.E. Knuth, Sur l’inversion de \[y^\alpha{\rm e}^y\] yαey au moyen de nombres de Stirling associés. Comptes Rendus Acad. Sci. Paris Série I 320, 1449-1452 (1995) · Zbl 0846.05002
[167] D.J. Jeffrey, D.E.G. Hare, R.M. Corless, Unwinding the branches of the Lambert function. Math. Sci. 21, 1-7 (1996) · Zbl 0852.33001
[168] R.M. Corless, D.J. Jeffrey, A sequence of series for the Lambert \[WW\] function, in Proceedings of International Symposium on Symbolic and Algebraic Computation [Kihei, Havaii, US], ed. by W.W. Kuechlin (ACM Press, New York, 1997), pp. 197-204. https://doi.org/10.1145/258726.258783 · Zbl 0916.65015
[169] R.M. Corless, D.J. Jeffrey, On the Wright \[\omega\] ω function. http://www.orcca.on.ca/TechReports/TechReports/2000/TR-00-12.pdf (2000) · Zbl 1072.68568
[170] R.M. Corless, D.J. Jeffrey, On the Wright \[\omega\] ω function, in Proceedings of International Joint Conference on Artificial Intelligence Automat. Reason. Symb. Comput. ed. by J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, V. Sorge (Spring, London, 2002), pp. 76-89 · Zbl 1072.68568
[171] S.R. Valluri, D.J. Jeffrey, R.M. Corless, Some applications of the Lambert \[WW\] function in physics. Can. J. Phys. 78, 823-831 (2000)
[172] R.M. Corless, D.J. Jeffrey, The Wright omega function, in Artificial Intelligence, Automated Reasoning, and Symbolic Computation, Joint International Conferences, AISC 2002 and Calculemus 2002, Marseille, France, July 2002 ed. by J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, V. Sorge http://orcca.on.ca/TechReports/2000/TR-00-12.html (Springer, Berlin, 2002), pp. 76-89 · Zbl 1072.68568
[173] J.M. Hefferman, R.M. Corless, Solving some delay differential equations with computer algebra. Math. Sci. 31, 21-34 (2006)
[174] R.M. Corless, H. Ding, N.J. Higham, D.J. Jeffrey, The solution of \[S\exp{(S)}=A\] Sexp(S)=A is not always the Lambert function of \[A\] A, in Proceedings of the International Symposium on Symbolic and Algebraic Computation (Waterloo, Ontario, Canada, 2007), pp. 116-121 · Zbl 1190.34072
[175] M. Bronstein, R.M. Corless, J.H. Davenport, D.J. Jeffrey, Algebraic properties of the Lambert W function from a result of Rosenlicht and of Liouville. Integral Transf. Spec. Funct. 19, 709-712 (2008) · Zbl 1156.33004
[176] G.A. Kalugin, D.J. Jeffrey, R.M. Corless, P.B. Borwein, Stieltjes and other integral representations for functions of Lambert \[WW\]. Integral Transf. Spec. Funct. 23, 581-593 (2011)
[177] G.A. Kalugin, D.J. Jeffrey, R.M. Corless, Bernstein, Pick, Poisson and related integral expressions for Lambert \[WW\]. Integral Transf. Spec. Funct. 23, 817-829 (2012) · Zbl 1255.30039
[178] T.C. Scott, J.F. Babb, A. Dalgarno, J.D. Morgan III, Resolution of a paradox in the calculation of exchange forces for \[{\rm H}^+_2\] H2+. Chem. Phys. Lett. 203, 175-183 (1993)
[179] T.C. Scott, J.F. Babb, A. Dalgarno, J.D. Morgan III, Calculation of exchange forces: general results and specific models. J. Chem. Phys. 99, 2841-2854 (1993)
[180] T.C. Scott, M. Aubert-Frécon, J. Grotendorst, New approach for the electronic energies of the hydrogen molecular ion. Chem. Phys. 324, 323-338 (2006)
[181] T.C. Scott, R. Mann, R.E. Martinez II, General relativity and quantum mechanics: towards a generalization of the Lambert \[WW\] function. Appl. Algor. Eng. Commun. Comput. 17, 41-47 (2006) (A longer version, with the same authors & the title is in: Forschungszentrum Juelich Technical Report Nr. FZJ-ZAM-IB-2005-10) · Zbl 1138.33011
[182] T.C. Scott, G. Fee, J. Grotendorst, Asymptotic series of generalized Lambert \[WW\] functions. ACM Commun. Comput. Algorithm 47, 75-83 (2013) · Zbl 1322.68288
[183] T.C. Scott, G. Fee, W.H. Zhang, Numerics of the generalized Lambert \[WW\] function. ACM Commun. Comput. Algorithm 48, 42-56 (2014) · Zbl 1314.65034
[184] A. Maignan, T.C. Scott, Fleshing out the generalized Lambert \[WW\] function. ACM Commun. Comput. Algorithm 50, 45-60 (2016) · Zbl 1367.33017
[185] N.D. Hayes, The roots of the equation \[x=(c\, {{\rm exp}})^nx\] x=(cexp)nx and the cycles of the substitution \[(x|c\, {\rm e}^x)\](x|cex). Q. J. Math. Oxf. 3, 81-90 (1952) · Zbl 0046.30601
[186] G.N. Raney, Functional composition patterns and power series reversion. Am. Math. Soc. 94, 411-451 (1960) · Zbl 0131.01402
[187] G.N. Raney, A formal solution of \[\sum_{i=1}^\infty A_i{\rm e}^{B_iX}=X\]∑i=1∞AieBiX=X. Can. J. Math. 16, 755-762 (1964) · Zbl 0122.01503
[188] N.I. Iokamidis, Application of the generalized Siewert-Burniston method to locating zeros and poles of meromorphic functions. Z. Angew. Math. Phys. 36, 733-742 (1985) · Zbl 0583.65020
[189] N.I. Iokamidis, E.G. Anastasselou, On the simultaneous determination of zeros of analytic or sectionally analytic functions. Computing 36, 239-247 (1986) · Zbl 0582.65035
[190] N.I. Ioakimidis, A note on the closed-form determination of zeros and poles of generalized analytic functions. Stud. Appl. Math. 81, 265-269 (1989) · Zbl 0691.30039
[191] D. Kalman, A generalized logarithm for exponential-linear equations. Coll. Math. J. 32, 2-14 (2001) · Zbl 0999.26002
[192] F. Chapeau-Blondeau, A. Monir, Numerical evaluation of the Lambert \[WW\] function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50, 2160-2165 (2002) · Zbl 1369.33022
[193] D.A. Barry, L. Li, D.-S. Jeng, Comments on numerical evaluation of the Lambert \[WW\] function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 52, 1456-1458 (2004) · Zbl 1370.33024
[194] C. Moler, Stiff differential equations. Matlab News & Notes, 12-13 (May 2003)
[195] G.D. Scarpello, D. Ritelli, A new method for explicit integration of Lotka-Volterra equations. Divulg. Mat. 11, 1-17 (2003) · Zbl 1048.34010
[196] S.-D. Shih, Comment on ‘A new method for explicit integration of Lotka-Volterra equations’. Divulg. Mat. 13, 99-106 (2005) · Zbl 1103.34316
[197] A.I. Kheyfits, Closed-form representations of the Lambert \[WW\] function. Fract. Calc. Appl. Anal. 7, 177-190 (2004) · Zbl 1077.33036
[198] I.N. Galiadakis, On the application of the Lambert’s \[WW\] function to infinite exponentials. Complex Var. 49, 759-780 (2004)
[199] I.N. Galidakis, On solving the \[p\] p-th complex auxiliary equation \[f^{(p)}(z)=z\] f(p)(z)=z. Complex Var. 50, 977-997 (2005) · Zbl 1188.30030
[200] I.N. Galiadakis, On, some applications of the generalized hyper-Lambert functions. Complex Var. Elliptic Equ. 52, 1101-1119 (2007) · Zbl 1151.30019
[201] G.A. Kalugin, D.J. Jeffrey, Unimodal sequences show Lambert \[WW\] is Bernstein. Comptes Rendus Math. Acad. Sci. Soc. R. Can. 33, 50-56 (2011) · Zbl 1266.11052
[202] I. Mező, G. Keady, Some physical applications of generalized Lambert functions. Eur. J. Phys. 37, Art. ID 065802 (2016) · Zbl 1351.76009
[203] I. Mező, On the structure of the solution set of a generalized Euler-Lambert equation. J. Math. Anal. Appl. 455, 538-553 (2017) · Zbl 1371.33036
[204] I. Mező, Á. Baricz, On the generalization of the Lambert \[WW\] function. Trans. Am. Math. Soc. 369, 7917-7934 (2017) · Zbl 1375.33034
[205] G. Keady, N. Khajohnsaksumeth, B. Wiwatanapataphee, On functions and inverses, both positive, decreasing and convex: And Stieltjes functions. Cog. Math. Stat. 5, Art. ID 1477543 (2018) · Zbl 1438.26020
[206] E.G. Anastasselou, N.I. Ioakimidis, A generalization of the Siewert-Burniston method for the determination of zeros of analytic functions. J. Math. Phys. 25, 2422-2425 (2017) · Zbl 0566.30004
[207] G.M. Goerg, Lambert \[WW\] random variables—a new family of generalized skewed distributions with applications of risk estimations. Ann. Appl. Stat. 5, 2197-2230 (2011) · Zbl 1228.62016
[208] D.J. Jeffrey, G.A. Kalugin, N. Murdoch, Lagrange inversion of the Lambert \[WW\] function, in International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (Timisoara, Romania, September 21-24, 2015), pp. 42-46
[209] M. Josuat-Vergès, Derivatives of the tree function. Ramanujan J. 38, 1-15 (2015) · Zbl 1322.05040
[210] L. Bertoli-Barsotti, T. Lando, A theoretical model of the relationship between the \[h\] h-index and other simple citation indicators. Scientometrics 111, 1415-1448 (2017)
[211] L. Bertoli-Barsotti, T. Lando, The \[h\] h-index as an almost exact function of some basic statistics. Scientometrics 113, 1209-1228 (2017)
[212] S. Gnanarajan, Solutions of the exponential equation \[y^{x/y}=x\] yx/y=x or \[(\ln{x})/x=(\ln{y})/y\](lnx)/x=(lny)/y and fine structure constants. J. Appl. Math. Phys. 5, 74192 (2017)
[213] S. Gnanarajan, Solutions for series of exponential equations in terms of Lambert \[WW\] function and fundamental constants. J. Appl. Math. Phys. 6, 725-736 (2018)
[214] Y.Q. Chen, K.L. Moore, Analytical stability for delayed second-order systems with repeating poles using the Lambert \[WW\] function. Automatica 38, 891-895 (2002) · Zbl 1020.93019
[215] Y.Q. Chen, K.L. Moore, Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191-200 (2002) · Zbl 1020.34064
[216] Q.-C. Zhong, Robust stability analysis of simple systems controlled over communication networks. Automatica 39, 1309-1312 (2003) · Zbl 1019.93045
[217] C. Hwang, Y.-C. Cheng, A note of the use of the Lambert \[WW\] function in the stability analysis of the time-delay systems. Automatica 41, 1979-1985 (2005) · Zbl 1125.93440
[218] T. Kalmár-Nagy, A novel method for efficient numerical stability analysis of delay-differential equations, American Control Conference (AACC: June 8-10, 2005, Portland, Oregon, USA), ThB18.2, pp. 2823-2826
[219] H. Shinozaki, T. Mori, Robust stability analysis of linear time-delay systems by Lambert \[WW\] function: some extreme point results. Automatica 42, 1791-1799 (2006) · Zbl 1114.93074
[220] W. Deng, J. Lu, C. Li, Stability of N-dimensional linear systems with multiple delays and application to synchronization. J. Syst. Sci. Complex. 19, 149-156 (2006) · Zbl 1118.34070
[221] Z.H. Wang, H.Y. Hu, Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert \[WW\] function. J. Sound Vib. 318, 757-767 (2008)
[222] S. Yi, P.W. Nelson, A.G. Ulsoy, Delay differential equations via the matrix Lambert \[WW\] function and bifurcation analysis: applications to machine tool clutter. Math. Biosci. Eng. 4, 355-368 (2007) · Zbl 1131.34056
[223] S. Yi, P.W. Nelson, A.G. Ulsoy, The use of the Lambert method with delays and with structure having the form of the star. Int. J. Inf. Educ. Technol. 2, 360-363 (2012)
[224] B. Cogan, A.M. Paor, Analytical root locus and Lambert \[WW\] function in a control of a process with time delay. J. Electr. Eng. 62, 327-334 (2011)
[225] J. Mech, D. Bandopadhya, Applications of the Lambert \[WW\]-function for solving time-delayed response of smart material actuator under alternating electric potential. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 230, 2135-2144 (2015)
[226] J.W. Müller, Deux nouvelles expressions concernant un temps mort cumulatif. BIPM Working Party Note 217, 5 (1980). www.bipm.org/en/publications/wpn.html (BIPM: Bureau Internationale des Poids et Mesures)
[227] B.A. Magradze, An analytic approach to perturbative QCD. Int. J. Mod. Phys. A 15, 2715-2733 (2000) · Zbl 0963.81073
[228] J.-M. Caillol, Some applications of the Lambert \[WW\] function to classical statistical mechanics. J. Phys. A 36, 10431-10442 (2003) · Zbl 1039.82021
[229] A.E. Dubinov, I.N. Galiadkis, Explicit solution of the Kepler equation. Phys. Part. Nucl. Lett. 4, 213-216 (2007)
[230] C. Huang, Z. Cai, C. Ye, H. Xu, Explicit solution of Raman fiber laser using Lambert \[WW\] function. Opt. Exp. 15, 4671-4676 (2007)
[231] S.R. Valluri, M. Gil, D.J. Jeffrey, S. Basu, The Lambert \[WW\] function in quantum statistics. J. Math. Phys. 50, Art. ID 102103 (2009) · Zbl 1248.82006
[232] S.R. Valluri, P. Wiegert, J. Drozd, M. Da Silva, A study of the orbits of the logarithmic potential for galaxies. Month. Not. R. Astron. Soc. 427, 2392-2400 (2012)
[233] P.A. Karkantzakos, Time of flight and the range of the motion of a projectile in a constant gravitational field under the influence of a retarding force proportional to the velocity. J. Eng. Sci. Technol. Rev. 2, 76-81 (2009)
[234] D. Gamliel, Using the Lambert function in an exchange NMR process with a time delay. Electronics J. Qualit. Theory Diff. Equat. (Proc. 9th Coll. Qualit. Theory Diff. Equat.) no. 7, 1-12 (2012) · Zbl 1324.34166
[235] A. Houari, Additional applications of Lambert \[WW\] function in physics. Eur. J. Phys. 34, 695-702 (2013)
[236] A.M. Ishkhanyan, A singular Lambert-\[WW\] Schrödinger potential exactly solvable in terms of the confluent hypergeometric function. Mod. Phys. Lett. 31, Art. ID 1650177 (2016) · Zbl 1351.81041
[237] D.A. Morales, Exact expressions for the range and the optimal angle of a projectile with linear drag. Can. J. Phys. 83, 67-83 (2005)
[238] D.A. Morales, A generalization on projectile motion with linear resistance. Can. J. Phys. 89, 1233-1250 (2011)
[239] D.A. Morales, Relationships between the optimum parameters of four projectile motions. Acta Mech. 227, 1593-1607 (2016) · Zbl 1371.70003
[240] E.W. Packel, D.S. Yuen, Projectile motion with resistance and the Lambert function. Coll. Math. J. 35, 337-350 (2004)
[241] R.D.H. Warburton, J. Wang, Analysis of asymptotic projectile motion with air resistance using the Lambert \[WW\] function. Am. J. Phys. 72, 1404-1407 (2004)
[242] R.D.H. Warburton, J. Wang, J. Burgdörfer, Analytical approximations of projectile motion with quadratic air resistance. J. Serv. Sci. Manag. 3, 98-105 (2010)
[243] S.M. Stewart, Linear resisted projectile motion and the Lambert \[WW\] function. Am. J. Phys. 73, 199-199 (2005)
[244] S.M. Stewart, An analytical approach to projectile motion in a linear resisting medium. Int. J. Math. Educ. Sci. Technol. 37, 411-431 (2006)
[245] S.M. Stewart, On certain inequalities involving the Lambert \[WW\] function. Inequal. Pure. Appl. Math. 10(4), Art. ID 96 (2009) · Zbl 1179.33040
[246] S.M. Stewart, Some remarks on the time of flight and range of a projectile in a linear resisting medium. J. Eng. Sci. Technol. Rev. 4, 32-34 (2011)
[247] H. Hernández-Saldaña, On the locus formed by the maximum heights of projectile motion with air resistance. Eur. J. Phys. 31, 1319-1329 (2010) · Zbl 1291.70051
[248] S.M. Stewart, Comment on ’On the locus formed by the maximum heights of projectile motion with air resistance’. Eur. J. Phys. 32, L7-L10 (2011) · Zbl 1220.70014
[249] S.M. Stewart, On the trajectories of projectiles depicted in early ballistic woodcuts. Eur. J. Phys. 33, 149-166 (2012) · Zbl 1318.70001
[250] H. Hu, Y.P. Zhao, Y.J. Guo, M.J. Zheng, Analysis of linear resisted projectile motion using the Lambert \[WW\] function. Acta Mech. 223, 441-447 (2012) · Zbl 1398.70049
[251] R.C. Bernardo, J.P.H. Esguerra, J.D. Vallejos, J.J. Canda, Wind-influenced projectile motion. Eur. J. Phys. 36, Art. ID 025016 (2015)
[252] S.R. Cranmer, New views of the solar wind with the Lambert \[WW\] function. Am. J. Phys. 72, 1397-1403 (2004). http://cfa-www.harvard.edu/scranmer/News2004/
[253] A. Jain, A. Kapoor, Exact analytical solutions of the parameters of real solar cells using Lambert \[WW\]-function. Sol. Energy Mater. Sol. Cells 81, 269-277 (2004)
[254] A. Jain, A. Kapoor, A new approach to study organic solar cell using Lambert \[W-W\]-function. Sol. Energy Mater. Sol. Cells 86, 197-205 (2005)
[255] F. Ghani, M. Duke, Numerical determination of parasitic resistances of a solar cell using the Lambert \[W-W\]-function. Sol. Energy 85, 2386-2394 (2011)
[256] J. Cubas, S. Pindado, C. de Manuel, Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert \[WW\]-function. Energies 7, 4098-4115 (2014)
[257] P. Upadhyay, S. Pulipaka, M. Sharma, Parametric extraction of solar photovoltaic system using Lambert \[WW\] function for different environment condition. IEEE Conf. TENCON (Singapore, November 22-25, 2016) 32, 1884-1888 (2016)
[258] J. Ge, M. Luo, W. Pan, Na Li, W. Peng, Parameters extraction for perovskite solar cells based on Lambert \[W-W\]-function. MATEC Web Conf. 59, Art. ID 03003 (2016)
[259] K. Roberts, S.R. Valluri, Solar cells and the Lambert \[WW\] function. https://www.researchgate.net/publication/305991463 (2016), Int. Workshop, “Celebrating 20 years of the Lambert <InlineEquation ID=”IEq520“> <EquationSource Format=”TEX“>\[W\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> W function”, Western University, London, Ontario, Canada (July 25-28, 2016). www.apmaths.uwo.ca/ djeffrey/LambertW/LambertW.html
[260] S. Schnell, C. Mendoza, Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 202-212 (1997)
[261] S. Schnell, C. Mendoza, Time-dependent closed form solutions for fully competitive enzyme reactions. Bull. Math. Biol. 62, 321-336 (2000) · Zbl 1323.92100
[262] S. Schnell, P.K. Maini, Enzyme kinetics at high enzyme concentrations. Bull. Math. Biol. 62, 483-499 (2000) · Zbl 1323.92099
[263] C.T. Goudar, J.R. Sonnad, R.G. Duggleby, Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Biochim. Biophys. Acta 1429, 377-383 (1999)
[264] C.T. Goudar, S.K. Harris, M.J. McInerney, J.M. Suflita, Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert \[WW\] function. J. Microbiol. Methods 59, 317-326 (2004)
[265] M.V. Putz, A.-M. Lacrǎmǎ, V. Ostafe, Full analytic progress curves of enzymatic reactions in vitro. Int. J. Mol. Sci. 2006, 469-484 (2006)
[266] M.V. Putz, A.-M. Lacrǎmǎ, V. Ostafe, Introducing logistic enzyme kinetics. J. Optoelectron. Adv. Mater. 9, 2910-2916 (2007)
[267] M. Helfgott, E. Seier, Some mathematical and statistical aspects of enzyme kinetics. J. Online Math. Appl. 7, 1611 (2007). http://www.maa.org/joma/Volume7/HelfEnzyme.pdf
[268] M.N. Berberan-Santos, A general treatment of Henri-Michaelis-Menten enzyme kinetics: exact series solution and approximate analytical solutions. MATCH Commun. Math. Comput. Chem. 63, 283-318 (2010)
[269] C. Baleizão, M.N. Berberan-Santos, Enzyme kinetics with a twist. J. Math. Chem. 49, 1949-1960 (2011) · Zbl 1227.92028
[270] M. Goličnik, Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model. Anal. Biochem. 406, 94-96 (2010)
[271] M. Goličnik, Explicit analytic approximations for time-dependent solutions of the integrated Michaelis-Menten equation. Anal. Biochem. 411, 303-305 (2011)
[272] M. Goličnik, Exact and approximate solutions of the decades old Michaelis-Menten equation: progress curve analysis through integrated rate equations. Biochem. Mol. Biol. Educ. 39, 117-125 (2011)
[273] M. Goličnik, Evaluation of enzyme kinetic parameters using explicit analytical approximations to the solution of the Michaelis-Menten equation. Biochem. Eng. J. 53, 234-238 (2011)
[274] F. Exnowitz, B. Meyer, T. Hackl, NMR for direct determination of \[K_{{\rm m}}\] Km and \[V_{{\rm{max}}}\] Vmax of enzyme reactions based on the Lambert \[WW\] function-analysis of progress curves. Biochim. Biophys. Acta 1824, 443-449 (2012)
[275] L. Bayón, J.A. Otero, P.M. Suárez, C. Tasis, Solving linear unbranched pathways with Michaelis-Menten kinetics using the Lambert \[WW\]-function. J. Math. Chem. 54, 1351-1369 (2016) · Zbl 1359.92126
[276] F. Bäuerle, A. Zotter, G. Schreiber, Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool. Protein Eng. Des. Sel. 30, 151-158 (2017)
[277] D.P. Francis, K. Willson, L.C. Davies, A.J.S. Coats, M. Piepoli, Quantitative general theory for periodic breathing in chronic heart failure and its clinical implications. Circulation 102, 2214-2221 (2000)
[278] K. Sigmudsson, G. Másson, R. Rice, M. Beauchemin, B. Öbrink, Determination of active concentrations and associations and dissociation rate constants of interacting biomolecules: an analytical solution to the theory for kinetic and mass transport limitation and biosensor technology and its experimental verifications. Biochemistry 41, 8263-8276 (2002)
[279] O.A.R. Mahroo, T.D. Lamb, Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics. J. Physiol. 554, 417-437 (2004)
[280] T.D. Lamb, E.N. Pugh Jr., Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307-380 (2004)
[281] D. Van De Ville, T. Blu, M. Unser, Wavelet-based fMRI statistical analysis approach and spatial interpolation: a unifying approach, in The 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), pp. 1167-1170 (2004)
[282] K. Smallbonea, D.J. Gavaghanb, R.A. Gatenbyc, P.K. Mainia, The role of acidity in solid tumour growth and invasion. J. Theor. Biol. 235, 476-484 (2005) · Zbl 1445.92082
[283] J. Li, Y. Kuang, C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two time delays. J. Theor. Biol. 242, 722-736 (2006) · Zbl 1447.92183
[284] R.C. Sotero, Y. Iturria-Medina, From blood oxygenation level dependent (BOLD) signals to brain temperature maps. Bull. Math. Biol. 73, 2731-2747 (2011) · Zbl 1334.92222
[285] X.-S. Wang, J. Wu, Y. Yang, Richards model revisited: Validation by and application to infection dynamics. J. Theor. Biol. 313, 12-19 (2012) · Zbl 1337.92219
[286] Dž Belkić, Survival of radiation-damaged cells via mechanism of repair by pool molecules: the Lambert function as the exact analytical solution of coupled kinetic equations. J. Math. Chem. 52, 1201-1252 (2014) · Zbl 1311.92085
[287] Dž Belkić, Repair of irradiated cells by Michaelis-Menten enzyme catalysis: the Lambert function for integrated rate equations in description of surviving fractions. J. Math. Chem. 52, 1253-1291 (2014) · Zbl 1311.92086
[288] R. Nagarajan, K. Krishnau, C. Monica, Stability analysis of a glucose-insulin dynamic system using matrix Lambert \[WW\] function. Br. J. Math. Comput. Sci. 8, 112-120 (2015)
[289] J.R. Sonnad, C.T. Goudar, Explicit reformulation of the Colebrook-White equation for turbulent flow friction factor calculation. Ind. Eng. Chem. Res. 46, 2593-2600 (2007)
[290] D. Clamond, Efficient resolution of the Colebrook equation. Ind. Eng. Chem. Res. 48, 3665-3671 (2009)
[291] D. Brkić, \[WW\] solution to the CW equation for flow friction. Appl. Math. Lett. 24, 1379-1383 (2011) · Zbl 1291.76178
[292] P. Praks, D. Brkić, Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction. Adv. Civ. Eng. 2018, Art. ID 5451034 (2018)
[293] S. Li, Y. Liu, Analytical and explicit solutions to implicit wave friction-factor equations based on the Lambert \[WW\] function. J. Coast. Res. (2018). https://doi.org/10.2112/JCOASTRES-D-17-00181.1
[294] D. Polovinka, B. Nevzlyn, A. Syrtsov, Measuring device moisture content of transformer oil. TEKA 13, 191-200 (2013) (TEKA: Commission of Motorization and Energetics in Agriculture; Int. J. of Motorization, Vehicle Operation, Energy Efficiency and Mechanical Engineering)
[295] S.M. Disney, R.D.H. Warburton, On the Lambert \[WW\] function: economic order quality applications and pedagogical considerations. Int. J. Product. Econ. 140, 756-764 (2012)
[296] J. Gómez-Gardeñes, L. Lotero, S.N. Taraskin, F.J. Pérez-Reche, Explosive contagion in networks. Sci. Rep. 6, Art. ID 19767 (2016). https://doi.org/10.1145/258726.258783
[297] B. Das, Obtaining Wien’s displacement law from Planck’s law of radiation. Phys. Teach. 40, 148-149 (2002). https://doi.org/10.1119/1.1466547
[298] F.Q. Gouvea, Time for a new elementary function. Editorial in: FOCUS 20, 2 (2002) (FOCUS: Newsletter of Mathematics Association of America)
[299] S.M. Stewart, A new elementary function for our curricula? Aust. Senior Math. J. 19, 8-26 (2002)
[300] S.M. Stewart, A little introductory and intermediate physics with the Lambert \[WW\] function. Proc. 16th Aust. Inst. Phys. 5, 194-197 (2005)
[301] S.M. Stewart, Wien peaks and the Lambert \[WW\] function. Revista Brasileira de Ensino de Fízica 33, Art. ID 3308 (2011)
[302] S.M. Stewart, Spectral peaks and Wien’s displacement law. J. Thermophys. Heat Transf. 26, 689-691 (2012)
[303] E.W. Packel, The Lambert W function and undergraduate mathematics, in Essays in Mathematics and Statistics, ed. by V. Akis, ATINER, Athens, Greece, 2009, pp. 147-154
[304] B.W. Williams, The utility of the Lambert function \[W[a exp(a-bt)]W\][aexp(a-bt)] in chemical kinetics. J. Chem. Educ. 87, 647-651 (2010)
[305] B.W. Williams, A specific mathematical form for Wien’s displacement law as \[v_{{\rm max}}T={\rm constant}\] vmaxT=constant. J. Chem. Educ. 91, 623-623 (2014)
[306] S.G. Kazakova, E.S. Pisanova, Some applications of the Lambert \[WW\]-function to theoretical physics education. CP1203, Proc. 7th Int. Conf. Balkan Phys. Union, ed. by A. Angelopoulos, T. Fildisis, Amer. Inst. Phys. pp. 1354-1359 (2010), https://www.researchgate.net/publication/252985023_Some_applications_of_the_-Lambert_W-function_to_Theoretical_Physics_Education
[307] A. Vial, Fall with linear drag and Wien’s displacement law: approximate solution and Lambert function. Eur. J. Phys. 33, 751-755 (2012) · Zbl 1328.70004
[308] D.W. Ball, Wien’s displacement law as a function of frequency. J. Chem. Educ. 90, 1250-1252 (2013)
[309] R. Das, Wavelength- and frequency-dependent formulations of Wien’s displacement law. J. Chem. Educ. 92, 1130-1134 (2015)
[310] R.M. Digilov, Gravity discharge vessel revisited: an explicit Lambert \[WW\] function solution. Am. J. Phys. 85, 510-514 (2017)
[311] K. Roberts, S.R. Valluri, Tutorial: The quantum finite square well and the Lambert \[WW\] function. Can. J. Phys. 95, 105-110 (2017)
[312] D. Brkić, Solution of the implicit Colebrook equation for flow friction using excel. Spreadsheets Educ. 10(2), Art, 2 (2017)
[313] M. Ito, Lambert W function and hanging chain revisited. Researchgate, https://www.researchgate.net/publication/327763764 [Lambert_W_function_and_hanging_chain_revisited.pdf], arXiv:1809.07047v1 [physics.class-ph] (2018)
[314] C.J. Gillespie, J.D. Chapman, A.P. Reuvers, D.L. Dugle, The inactivation of Chinese hamster cells by X rays: synchronized and exponential cell populations. Radiat. Res. 64, 353-364 (1975)
[315] C.J. Gillespie, J.D. Chapman, A.P. Reuvers, D.L. Dugle, Survival of X-irradiated hamster cells: analysis of the Chadwick-Leenhouts model, in Cellular Survival after Low Doses of Irradiation, The 6th L.H. Gray Conf. Proc. (Wiley, The Institute of Physics Publishing, Bristol, 1975), pp. 25-63
[316] A. Brahme, Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol. 42, 123-136 (2003)
[317] L. Comtet, Advanced Combinatorics (D. Reidel Publishing Company, Dordrecht, 1974)
[318] W.K. Sinclair, R.A. Morton, X-ray and ultraviolet sensitivity of syncronized Chinese hanster cells at various stages of the cell cycle. Biophys. J. 5, 1-25 (1965)
[319] W.K. Sinclair, R.A. Morton, X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat. Res. 29, 450-474 (1966)
[320] W.K. Sinclair, The shape of radiation survival curves of mammalian cells cultered in vitro, in Biophysical Aspects of Radiation Quality (International Atomic Energy Agency, IAEA, Vienna, 1966), Technical Report Series 58, pp. 21-43
[321] W.K. Sinclair, Cyclic X-ray responses in mammalian cells in vitro. Radiat. Res. 33, 620-643 (1968)
[322] J. Kruuv, W.K. Sinclair, X-Ray sensitivity of synchronized Chinese hamster cells irradiated during hypoxia. Radiat. Res. 36, 45-54 (1968)
[323] W.K. Sinclair, Protection by cysteamine against lethal X-ray damage during the cell cycle of Chinese hamster cells. Radiat. Res. 39, 135-154 (1969)
[324] W.K. Sinclair, Dependence of radiosensitivity upon cell age, in Conference on Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy (held at Carmel, California, September 15-18, 1969), Brookhaven National Laboratory Technical Report, # BNL-50203 (C-57), pp. 97-116
[325] S. Biade, C.C. Stobbe, J.D. Chapman, The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. Radiat. Res. 147, 416-421 (1997)
[326] J.D. Chapman, C.J. Gillespie, Radiation-induced events and their time scale in mammalian cells. Adv. Radiat. Biol. 9, 143-198 (1981)
[327] J.D. Chapman, C.J. Gillespie, The power of radiation biophysics—let’s use it. Int. J. Radiat. Oncol. Biol. Phys. 84, 309-311 (2012)
[328] J.D. Chapman, A.E. Nahum, Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology (Taylor & Francis, London, 2016), Ch 3, Intrinsic radiosensitivity of proliferating and quiescent cells, pp. 19-30
[329] K.H. Chadwick, H.P. Leenhouts, The effect of an asynchronous population of cells on the initial slope of dose-effect curve, in Cellular Survival after Low Doses of Irradiation, The 6th L.H.Gray Conf. Proc. (Wiley, The Institute of Physics Publishing, Bristol, 1975), pp. 57-63
[330] K.H. Chadwick, H.P. Leenhouts, The Molecular Theory of Radiation Biology (Springer, Heidelberg, 1981), pp. 43-46
[331] Dž. Belkić, Quantum-Mechanical Signal Processing and Spectral Analysis (The Institute of Physics (Publishing, Bristol, 2005)
[332] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1999)
[333] C. Moler, Cleve’s corner: Roots of polynomials, that is. MathWorks Newslett. 5(1), 8-9 (1991)
[334] A. Edelman, H. Murakami, Polynomial roots from companion matrix eigenvalues. Math. Comput. 64, 763-776 (1995) · Zbl 0833.65041
[335] A. Girard, Invention Nouvelle en L’Algèbre (Guillaume Iansson Blaeuw, Amsterdam, 1629), English translation, in The Early Theory of Equations: On Their Nature and Constitution: Translations of Three Treatises by Viète, Girard, and De Beaune, ed. by R. Schmidt, E. Black (Golden Hind Press, Annapolis, Maryland, 1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.