×

Bubbletons are not embedded. (English) Zbl 1259.53008

The main goal of this paper is to prove that bubbletons are not embedded. It is based on a deformation technique from the theory of harmonic maps via loop groups, called “dressing”. The proof is technical in nature, but straight-forward and very elegant.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDFBibTeX XMLCite
Full Text: arXiv Euclid

References:

[1] A.I. Bobenko: Surfaces of constant mean curvature and integrable equations , Russian Math. Surveys 46 (1991), 1-45. · Zbl 0793.14035
[2] F.E. Burstall: Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems ; in Integrable Systems, Geometry, and Topology, AMS/IP Stud. Adv. Math. 36 , Amer. Math. Soc., Providence, RI, 1-82, 2006. · Zbl 1105.53002
[3] F.E. Burstall, J.F. Dorfmeister, K. Leschke and A. Quintino: Darboux transforms and simple factor dressing of constant mean curvature surfaces , arXiv: · Zbl 1269.53009
[4] \begingroup F.E. Burstall and F. Pedit: Dressing orbits of harmonic maps , Duke Math. J. 80 (1995), 353-382. \endgroup · Zbl 0966.58007 · doi:10.1215/S0012-7094-95-08015-6
[5] J. Dorfmeister and G. Haak: Investigation and application of the dressing action on surfaces of constant mean curvature , Q.J. Math. 51 (2000), 57-73. · Zbl 1001.53003 · doi:10.1093/qmathj/50.1.57
[6] J. Dorfmeister and M. Kilian: Dressing preserving the fundamental group , Differential Geom. Appl. 23 (2005), 176-204. · Zbl 1079.53013 · doi:10.1016/j.difgeo.2005.06.001
[7] U. Hertrich-Jeromin and F. Pedit: Remarks on the Darboux transform of isothermic surfaces , Doc. Math. 2 (1997), 313-333. · Zbl 0892.53003
[8] M. Kilian: Constant mean curvature cylinders , Univ. of Massachusetts, Amherst, Ph.D. thesis 2000. · Zbl 1017.53009
[9] M. Kilian, W. Rossman and N. Schmitt: Delaunay ends of constant mean curvature surfaces , Compos. Math. 144 (2008), 186-220. · Zbl 1144.53015 · doi:10.1112/S0010437X07003119
[10] M. Kilian and M.U. Schmidt: On the moduli of constant mean curvature cylinders of finite type in the 3-sphere , 2007). arXiv:
[11] M. Kilian, N. Schmitt and I. Sterling: Dressing CMC \(n\)-noids , Math. Z. 246 (2004), 501-519. · Zbl 1065.53010 · doi:10.1007/s00209-003-0587-y
[12] S. Kobayashi: Bubbletons in 3-dimensional space forms , Balkan J. Geom. Appl. 9 (2004), 44-68. · Zbl 1072.53003
[13] S. Kobayashi: Asymptotics of ends of constant mean curvature surfaces with bubbletons , Proc. Amer. Math. Soc. 136 (2008), 1433-1443. · Zbl 1132.53008 · doi:10.1090/S0002-9939-07-09137-X
[14] S. Kobayashi and J.-I. Inoguchi: Characterizations of Bianchi-Bäcklund transformations of constant mean curvature surfaces , Internat. J. Math. 16 (2005), 101-110. · Zbl 1083.53011 · doi:10.1142/S0129167X05002801
[15] N. Schmitt: Bubbletons , http://www.mathematik.uni-tuebingen.de/ nick/ gallery/Bubbleton.html. · Zbl 0697.52006
[16] N. Schmitt: CMC gallery , http://www.gang.umass.edu/gallery. · Zbl 0697.52006
[17] N. Schmitt: Gallery , http://www.mathematik.uni-tuebingen.de/ab/ Differentialgeometrie/. · Zbl 0697.52006
[18] N. Schmitt, M. Kilian, S. Kobayashi and W. Rossman: Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms , J. Lond. Math. Soc. (2) 75 (2007), 563-581. · Zbl 1144.53017 · doi:10.1112/jlms/jdm005
[19] I. Sterling and H.C. Wente: Existence and classification of constant mean curvature multibubbletons of finite and infinite type , Indiana Univ. Math. J. 42 (1993), 1239-1266. · Zbl 0803.53009 · doi:10.1512/iumj.1993.42.42057
[20] A. Sym: Soliton surfaces and their applications (soliton geometry from spectral problems) ; in Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, 1984), Lecture Notes in Phys. 239 Springer, Berlin, 154-231, 1985. · Zbl 0583.53017 · doi:10.1007/3-540-16039-6_6
[21] C.-L. Terng and K. Uhlenbeck: Bäcklund transformations and loop group actions , Comm. Pure Appl. Math. 53 (2000), 1-75. · Zbl 1031.37064 · doi:10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.