×

Colouring fuzziness for systems biology. (English) Zbl 1507.92030

Summary: Snoopy is a powerful modelling and simulation tool for various types of Petri nets, which have been applied to a wide range of biochemical reaction networks. We present an enhanced version of Snoopy, now supporting coloured and uncoloured stochastic, continuous and hybrid Petri nets with fuzzy kinetic parameters. Colour helps to cope with modelling challenges imposed by larger and more complex networks. Fuzzy parameters are specifically useful when kinetic parameter values can not be precisely measured or estimated. By running fuzzy simulation we obtain output bands of the variables of interest induced by the effect of the fuzzy kinetic parameters. Simulation is always done on the uncoloured level. For this purpose, coloured fuzzy Petri nets are automatically unfolded to their corresponding uncoloured counterparts. Combining the power of fuzzy kinetic parameters with the modelling convenience of coloured Petri nets provides a new quality in user support with sophisticated modelling and analysis features.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
93C65 Discrete event control/observation systems
93C42 Fuzzy control/observation systems

Software:

SNOOPY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, F.; Heiner, M.; Gilbert, D., Fuzzy Petri nets for modelling of uncertain biological systems, Brief. Bioinform., 21, 1, 198-210 (January 2020)
[2] Liu, F.; Chen, S.; Heiner, M.; Song, H., Modelling biological systems with uncertain kinetic data using continuous Petri nets, BMC Syst. Biol., 12, 64-74 (2018)
[3] Liu, F.; Heiner, M.; Yang, M., Fuzzy stochastic Petri nets for modeling biological systems with uncertain kinetic parameters, PLoS ONE, 11, 2, Article e0149674 pp. (2016)
[4] Assaf, G.; Heiner, M.; Liu, F., Biochemical reaction networks with fuzzy kinetic parameters in Snoopy, (Bortolussi, L.; Sanguinetti, G., Proc. CMSB 2019. Proc. CMSB 2019, LNCS/LNBI, vol. 11773 (2019), Springer), 302-307
[5] Heiner, M.; Herajy, M.; Liu, F.; Rohr, C.; Schwarick, M., Snoopy – a unifying Petri net tool, (Proc. PETRI NETS 2012. Proc. PETRI NETS 2012, LNCS, vol. 7347 (2012), Springer), 398-407
[6] Herajy, M., Computational steering of multi-scale biochemical networks (January 2013), BTU Cottbus, Computer Science Institute, Ph.D. thesis
[7] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[8] Herajy, M.; Heiner, M., Hybrid representation and simulation of stiff biochemical networks, Nonlinear Anal. Hybrid Syst., 6, 4, 942-959 (2012) · Zbl 1269.93061
[9] Herajy, M.; Heiner, M., An improved simulation of hybrid biological models with many stochastic events and quasi-disjoint subnets, (Rabe, M.; Juan, A.; Mustafee, N.; Skoogh, A.; Jain, S.; Johansson, B., Proceedings of the 2018 Winter Simulation Conference (WSC 2018), Gothenburg, Sweden (2018), IEEE), 1346-1357
[10] Blätke, M.; Heiner, M.; Marwan, W., BioModel Engineering with Petri Nets, 141-193 (2015), Elsevier Inc., Ch. 7
[11] Genrich, H.; Lautenbach, K., The analysis of distributed systems by means of predicate/transition-nets, (Kahn, G., Semantics of Concurrent Computation. Semantics of Concurrent Computation, LNCS, vol. 70 (1979), Springer), 123-146 · Zbl 0407.68066
[12] Jensen, K., Coloured Petri nets and the invariant-method, Theor. Comput. Sci., 14, 3, 317-336 (1981) · Zbl 0475.68035
[13] Liu, F.; Heiner, M.; Rohr, C., Manual for Colored Petri Nets in Snoopy (March 2012), BTU Cottbus, Computer Science Institute, Tech. Rep. 02-12
[14] Liu, F., Colored Petri nets for systems biology (January 2012), BTU Cottbus, Computer Science Institute, Ph.D. thesis
[15] Blossey, R.; Cardelli, L.; Phillips, A., Compositionality, stochasticity and cooperativity in dynamic models of gene regulation, HFSP J., 2, 1, 17-28 (2008)
[16] Liu, F.; Heiner, M., Petri Nets for Modeling and Analyzing Biochemical Reaction Networks, 245-272 (2014), Springer, Ch. 9
[17] Zadeh, L., Fuzzy sets, Inf. Control, 8, 338-353 (1965) · Zbl 0139.24606
[18] Zhang, X.; Ma, W.; Chen, L., New similarity of triangular fuzzy number and its application, Sci. World J., 2014, Article 215047 pp. (2014)
[19] Zimmermann, H.-J., Fuzzy set theory, WIREs: Comput. Stat., 2, 3, 317-332 (2010)
[20] Liu, F.; Heiner, M.; Yang, M., An efficient method for unfolding colored Petri nets, (Proceedings of the 2012 Winter Simulation Conference (WSC 2012) (2012), IEEE: IEEE Berlin)
[21] Schwarick, M.; Rohr, C.; Liu, F.; Assaf, G.; Chodak, J.; Heiner, M., Efficient unfolding of coloured Petri nets using interval decision diagrams, (Janicki, R.; Sidorova, N.; Chatain, T., Proc. PETRI NETS 2020. Proc. PETRI NETS 2020, LNCS, vol. 12152 (2020), Springer: Springer Cham), 324-344
[22] accessed: 2020-07-14
[23] Mckay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239-245 (1979) · Zbl 0415.62011
[24] Latin, Hypercube Sample library
[25] Petre, I.; Mizera, A.; Hyder, C.; Meinander, A.; Mikhailov, A.; Morimoto, R.; Sistonen, L.; Eriksson, J.; Back, R., A simple mass-action model for the eukaryotic heat shockresponse and its mathematical validation, Nat. Comput., 12, 596-612 (2010), accepted for publication: January 2018
[26] Liu, F.; Heiner, M., Multiscale modelling of coupled ca2+ channels using coloured stochastic Petri nets, IET Syst. Biol., 7, 4, 106-113 (2013)
[27] Chodak, J.; Heiner, M., Spike – reproducible simulation experiments with configuration file branching, (Bortolussi, L.; Sanguinetti, G., Proc. CMSB 2019. Proc. CMSB 2019, LNCS/LNBI, vol. 11773 (2019), Springer), 315-321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.