×

Predictive coding models for pain perception. (English) Zbl 1489.92014

Summary: Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats – two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out – thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
91E30 Psychophysics and psychophysiology; perception
PDFBibTeX XMLCite
Full Text: DOI DOI

References:

[1] Aitchison, L.; Lengyel, M., With or without you: predictive coding and Bayesian inference in the brain, Current Opinion in Neurobiology, 46, 219-227 (2017)
[2] Arnal, LH; Giraud, AL, Cortical oscillations and sensory predictions, Trends in Cognitive Sciences, 16, 390-398 (2012)
[3] Bastos, AM; Litvak, V.; Moran, R.; Bosman, CA; Fries, P.; Friston, KJ, A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey, Neuroimage, 108, 460-475 (2015)
[4] Bastos, AM; Usrey, WM; Adams, RA; Mangun, GR; Fries, P.; Friston, KJ, Canonical microcircuits for predictive coding, Neuron, 76, 695-711 (2012)
[5] Bauer, M.; Stenner, MP; Friston, KJ; Dolan, RJ, Attentional modulation of alpha/beta and gamma oscillations reflect functionally distinct processes, The Journal of Neuroscience, 34, 16117-16125 (2014)
[6] Bennett, GJ, What is spontaneous pain and who has it?, The Journal of Pain, 13, 921-929 (2012)
[7] Bressler, SL; Richter, CG, Interareal oscillatory synchronization in top-down neocortical processing, Current Opinion in Neurobiology, 31, 62-66 (2015)
[8] Bressloff, PC; Cowan, JD; Golubitsky, M.; Thomas, PJ; Wiener, MC, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 356, 299-330 (2001)
[9] Buchel, C.; Geuter, S.; Sprenger, C.; Eippert, F., Placebo analgesia: a predictive coding perspective, Neuron, 81, 1223-1239 (2014)
[10] Bushnell, MC; Ceko, M.; Low, LA, Cognitive and emotional control of pain and its disruption in chronic pain, Nature Reviews. Neuroscience, 14, 502-511 (2013)
[11] Bushnell, MC; Duncan, GH; Hofbauer, RK; Ha, B.; Chen, JI; Carrier, B., Pain perception: is there a role for primary somatosensory cortex?, Proceedings of the National Academy of Sciences of the United States of America, 96, 7705-7709 (1999)
[12] Constantinople, CM; Bruno, RM, Deep cortical layers are activated directly by thalamus, Science, 340, 1591-1594 (2013)
[13] Dale, J.; Zhou, H.; Zhang, Q.; Martinez, E.; Hu, S.; Liu, K.; Urien, L.; Chen, Z.; Wang, J., Scaling up cortical control inhibits pain, Cell Reports, 23, 1301-1313 (2018)
[14] Deco, G.; Jirsa, VK; McIntosh, AR, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nature Reviews Neuroscience, 12, 43-56 (2011)
[15] Deuis, JR; Dvorakova, LS; Vetter, I., Methods used to evaluate pain behaviors in rodents, Frontiers in Molecular Neuroscience, 10, 284 (2017)
[16] Dirig, DM; Salami, A.; Rathbun, ML; Ozaki, GT; Yash, TL, Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli, Journal of Neuroscience Methods, 76, 183-191 (1997)
[17] Ermentrout, GB; Cowan, JD, A mathematical theory of visual hallucination patterns, Biological Cybernetics, 34, 137-150 (1979) · Zbl 0409.92008
[18] Eto, K.; Wake, H.; Watanabe, M.; Ishibashi, H.; Noda, M.; Yanagawa, Y.; Nabekura, J., Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior, The Journal of Neuroscience, 31, 7631-7636 (2011)
[19] Friston, KJ; Bastos, A.; Litvak, V.; Stephan, EK; Fries, P.; Moran, RJ, DCM for complex-valued data: cross-spectra, coherence and phase-delays, Neuroimage, 59, 439-455 (2012)
[20] Friston, KJ; Bastos, AM; Pinotsis, D.; Litvak, V., LFP and oscillations-what do they tell us?, Current Opinion in Neurobiology, 31, 1-6 (2015)
[21] Friston, KJ; Kiebel, S., Predictive coding under the free-energy principle, Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211-1221 (2009)
[22] Gross, J.; Schnizler, A.; Timmermann, L.; Ploner, M., Gamma oscillations in human primary somatosensory cortex reflect pain perception, PLoS Biology, 5, e133 (2007)
[23] Guo, X.; Zhang, Q.; Singh, A.; Wang, J.; Chen, Z., Granger causality analysis of rat cortical functional connectivity in pain, Journal of Neural Engineering, 17, 016050 (2020)
[24] Hardy, SG, Analgesia elicited by prefrontal stimulation, Brain Research, 339, 281-284 (1985)
[25] Hauck, M.; Domnick, C.; Lorenz, J.; Gerloff, C.; Engel, AK, Top-down and bottom-up modulation of pain-induced oscillations, Frontiers in Human Neuroscience, 9, 375 (2015)
[26] Hoskin, R.; Berzuini, C.; Acosta-Kane, D.; El-Deredy, W.; Guo, H.; Talmi, D., Sensitivity to pain expectations: A Bayesian model of individual differences, Cognition, 182, 127-139 (2019)
[27] Hu, L.; Peng, W.; Valntini, E.; Zhang, Z.; Hu, Y., Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations, The Journal of Pain, 14, 89-99 (2013)
[28] Huang, Y.; Rao, RPN, Predictive coding, Wiley Interdisciplinary Reviews: Cognitive Science, 2, 580-593 (2011)
[29] Iannetti, GD; Mouraux, A., From the neuromatrix to the pain matrix (and back), Experimental Brain Research, 205, 1-12 (2010)
[30] Johansen, JP; Fields, HL; Manning, BH, The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex, Proceedings. National Academy of Sciences. United States of America, 98, 8077-8082 (2001)
[31] Keeley, S.; Byrne, A.; Fenton, A.; Rinzel, J., Firing rate models for gamma oscillations, Journal of Neurophysiology, 121, 2181-2190 (2019)
[32] Lea-Carnall, CA; Montemurro, MA; Trujillo-Barreto, NJ; Parkes, LM; El-Deredy, W., Cortical resonance frequencies emerge from network size and connectivity, PLoS Computational Biology, 12, 1-19 (2016)
[33] Lee, M.; Manders, TR; Eberle, SE; Su, C.; D’amour, J., Yang, R., Lin, H. Y., Deisseroth, K., Froemke, R. C., Wang, J., Activation of corticostriatal circuitry relieves chronic neuropathic pain, The Journal of Neuroscience, 35, 5247-5259 (2015)
[34] Legrain, V.; Iannetti, GD; Plaghki, L.; Mouraux, A., The pain matrix reloaded: a salience detection system for the body, Progress in Neurobiology, 93, 111-124 (2011)
[35] Martinez, E.; Lin, HH; Zhou, H.; Dale, J.; Liu, K.; Wang, J., Corticostriatal regulation of acute pain, Frontiers in Cellular Neuroscience, 11, 146 (2017)
[36] Meijer, HGE; Eissa, TL; Kiewiet, B.; Neuman, JF; Schevon, CA; Emerson, RG; Goodman, RR; McKhann, GM; Marcuccilli, CJ; Tryba, AK; Cowan, JD; van Gils, SA; van Drongelen, W., Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block, The Journal of Mathematical Neuroscience, 5, 7 (2015) · Zbl 1357.92013
[37] Morrison, I.; Perini, I.; Dunham, J., Facets and mechanisms of adaptive pain behavior: predictive regulation and action, Frontiers in Human Neuroscience, 7, 755 (2013)
[38] Peng, W.; Babiloni, C.; Mao, Y.; Hu, Y., Subjective pain perception mediated by alpha rhythms, Biological Psychology, 109, 141-150 (2015)
[39] Peng, W.; Xia, X.; Yi, M.; Huang, G.; Zhang, Z.; Iannetti, G.; Hu, L., Brain oscillations reflecting pain-related behavior in freely moving rats, PAIN, 159, 106-118 (2018)
[40] Pinotsis, D.; Robinson, P.; Graben, PB; Friston, K., Neural masses and fields: modeling the dynamics of brain activity, Frontiers in Computational Neuroscience, 8, 149 (2014)
[41] Ploner, M.; Sorg, C.; Gross, J., Brian rhythms of pain, Trends in Cognitive Sciences, 21, 100-110 (2017)
[42] Rao, RP; Ballard, DH, Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects, Nature Neuroscience, 2, 79-87 (1999)
[43] Roberts, JA; Gollo, LL; Abeysuriya, RG; Roberts, G.; Mitchell, PB; Woolrich, MW, Metastable brain waves, Nature Communications, 10, 1-17 (2019)
[44] Schultz, E.; May, ES; Tiemann, L.; Nickel, MM; Witkovsky, V.; Schmidt, P.; Gross, J.; Ploner, M., Prefrontal gamma oscillations encode tonic pain in humans, Cerebral Cortex, 25, 4407-4414 (2015)
[45] Sedley, W.; Gander, PE; Kumar, S.; Kovach, CK; Oya, H.; Kawasaki, H.; Howard, MA; Griffiths, TD, Neural signatures of perceptual inference, eLife, 5, e11476 (2016)
[46] Sesack, SR; Deutch, AY; Roth, RH; Bunney, BS, Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin, The Journal of Comparative Neurology, 290, 213-242 (1989)
[47] Sesack, SR; Pickel, VM, Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area, The Journal of Comparative Neurology, 320, 145-160 (1992)
[48] Shipp, S.; Adams, RA; Friston, KJ, Reflections on agranular architecture: predictive coding in the motor cortex, Trends in Neurosciences, 36, 706-716 (2013)
[49] Shusterman, V.; Troy, WC, From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks, Physical Review E, 77, 061911 (2018)
[50] Singh, A.; Patel, D.; Hu, L.; Li, A.; Zhang, Q.; Guo, X.; Robinson, E.; Martinez, E.; Doan, L.; Rudy, B.; Chen, Z.; Wang, J., Mapping cortical integration of sensory and affective pain pathways, Current Biology, 30, 1703-1715 (2020)
[51] Song, Y.; Kemprecos, H.; Wang, J.; Chen, Z., A predictive coding model for evoked and spontaneous pain (2019), Proc: IEEE EMBC, Proc · doi:10.1109/EMBC.2019.8857298
[52] Tabor, A.; Thacker, MA; Moseley, GL; Kording, KP, Pain: A statistical account, PLoS Computational Biology, 13, 1-13 (2017)
[53] Talsma, D., Predictive coding and multisensory integration: an attentional account of the multisensory mind, Frontiers in Integrative Neuroscience, 9, 19 (2015)
[54] Tan, LL; Oswald, MJ; Heinl, C., Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception, Nature Communications, 10, 983 (2019)
[55] Tiemann, L.; May, ES; Postorino, M.; Schulz, E.; Nickel, MM; Bingel, U.; Ploner, M., Differential neurophysiological correlates of bottom-up and top-down modulations of pain, PAIN, 156, 289-296 (2015)
[56] Tu, Y.; Zhang, Z.; Tan, A.; Peng, W.; Hung, YS; Moayedi, M.; Iannetti, GD; Hu, L., Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli, Human Brain Mapping, 37, 501-514 (2016)
[57] Urien, L.; Xiao, Z.; Bauer, EP; Chen, Z.; Wang, J., Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation, Scientific Reports, 8, 8298 (2018)
[58] van Pelt, S.; Heil, L.; Kwisthout, J.; Ondobaka, S.; van Rooij, I.; Bekkering, H., Beta and gamma-band activity reflect predictive coding in the processing of causal events, Social Cognitive and Affective Neuroscience, 11, 973-980 (2016)
[59] Vierck, CJ; Whitsel, BL; Favorov, OV; Brown, AW; Tommerdahl, M., Role of primary somatosensory cortex in the coding of pain, PAIN, 154, 334-344 (2013)
[60] Wagner, TD; Atlas, LY, The neuroscience of placebo effects: connecting context, learning and healthy, Nature Reviews. Neuroscience, 16, 403-418 (2015)
[61] Wiech, K., Deconstructing the sensation of pain: the influence of cognitive processes on pain perception, Science, 354, 584-587 (2016)
[62] Wilson, HR; Blake, R.; Lee, SH, Dynamics of traveling waves in visual perception, Nature, 412, 907-910 (2001)
[63] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophysics Journal, 12, 1-24 (1972)
[64] Xiao, Z.; Martinez, E.; Kulkarni, P.; Zhang, Q.; Rosenberg, D.; Hou, Q.; Zhou, H.; Wang, J.; Chen, Z., Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex, Frontiers in Cellular Neuroscience, 13, 165 (2019)
[65] Zhang, CH; Sohrabpour, A.; Lu, Y.; He, B., Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation, Human Brain Mapping, 37, 2976-2991 (2016)
[66] Zhang, Z.; Gadotti, VM; Chen, L.; Souza, IA; Stemkowski, PL; Zamponi, GW, Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain, Cell Reports, 12, 752-759 (2015)
[67] Zhang, ZG; Hu, L.; Hung, YS; Mouraux, A.; Iannetti, GD, Gamma-band oscillations in the primary somatosensory cortex-a direct and obligatory correlate of subjective pain intensity, The Journal of Neuroscience, 32, 7429-7438 (2012)
[68] Zhou, H.; Zhang, Q.; Martinez, E.; Hu, S.; Liu, K.; Dale, J.; Huang, D.; Yang, G.; Chen, Z.; Wang, J., Ketamine reduces hyperactivity of the anterior cingulate cortex to provide enduring relief of chronic pain, Nature Communications, 9, 3751 (2018)
[69] Bastos A. M, Lundqvist M, Waite A, Kopell N, Miller E. K. (2020). Layer and rhythm specificity for predictive routing. biorxiv.org, doi:10.1101/2020.01.27.921783.
[70] Geuter S, Boll S, Eippert F, Buchel C. (2017). Functional dissociation of stimulus intensity coding and predictive coding of pain in the insula. eLife 6: e24770.
[71] Hayden B. Y, Platt M. L. (2009). Cingulate cortex. In Encyclopedia of Neuroscience Elsevier.
[72] Vase L, Petersen G. L, Lund K. (2014). Placebo effects in idiopathic and neuropathic pain conditions. In Benedetti F, Enck P, Frisaldi E, Schedlowski M (eds). Placebo (pp. 121-136). Springer.
[73] Yu Y, Huber L, Yang J, et al. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science Advances 5:eaav9053.
[74] Zhang Q, Mander T. R, Tong A. P. S, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien L, Yang G, Chen Z, Wang J. (2017). Chronic pain induces generalized enhancement of aversion. eLife 6: e25302.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.