×

Stokes drift. (English) Zbl 1404.76056

Summary: During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift [G. G. Stokes, “On the theory of oscillatory waves”, Trans. Camb. Philos. Soc. 8, 441–455 (1847)] . More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

ROMS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stokes GG. (1847) On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441-455.
[2] Wallet A, Ruellan F. (1950) Trajectories of particles within a partial clapotis. Houille Blanche 5, 483-489.
[3] van Dyke M. (1982) An album of fluid motion. Stanford, CA: The Parabolic Press.
[4] Constantin A. (2014) Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781-789. (doi:10.1175/JPO-D-13-0174.1) · doi:10.1175/JPO-D-13-0174.1
[5] Coy L, Fritts DC, Weinstock J. (1986) The Stokes drift due to vertically propagating internal gravity waves in a compressible atmosphere. J. Atmos. Sci. 43, 2636-2643. (doi:10.1175/1520-0469(1986)043<2636:TSDDTV>2.0.CO;2) · doi:10.1175/1520-0469(1986)043<2636:TSDDTV>2.0.CO;2
[6] Thorpe SA. (1968) On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond. A 263, 563-614. (doi:10.1098/rsta.1968.0033) · Zbl 0182.29503 · doi:10.1098/rsta.1968.0033
[7] Constantin A, Germain P. (2013) Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802-2810. (doi:10.1002/jgrc.20219) · doi:10.1002/jgrc.20219
[8] Henry D, Sastre-Gomez S. (2016) Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current. J. Math. Fluid Mech. 18, 795-804. (doi:10.1007/s00021-016-0262-9) · Zbl 1359.76059 · doi:10.1007/s00021-016-0262-9
[9] Marshall DP, Vogel B, Zhai X. (2013) Rossby rip currents. Geophys. Res. Lett. 40, 4333-4337. (doi:10.1002/grl.50842) · doi:10.1002/grl.50842
[10] Weber JEH. (2017) Equatorial Stokes drift and Rossby rip currents. J. Geophys. Res. Oceans 122, 4819-4828. (doi:10.1002/2016JC012653) · doi:10.1002/2016JC012653
[11] Vanneste J, Bühler O. (2011) Streaming by leaky surface acoustic waves. Proc. R. Soc. A 467, 1779-1800. (doi:10.1098/rspa.2010.0457) · Zbl 1228.76146 · doi:10.1098/rspa.2010.0457
[12] Craik ADD. (1985) Wave interactions and fluid flows. Cambridge, UK: Cambridge University Press.
[13] Bühler O. (2014) Waves and mean flows, 2nd edn. Cambridge, UK: Cambridge University Press. · Zbl 1286.86002
[14] Craig PD, Banner ML. (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr. 24, 2546-2559. (doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2) · doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
[15] Gemmrich J, Mudge T, Polonichko V. (1994) On the energy input from wind to surface waves. J. Phys. Oceanogr. 24, 2413-2417. (doi:10.1175/1520-0485(1994)024<2413:OTEIFW>2.0.CO;2) · doi:10.1175/1520-0485(1994)024<2413:OTEIFW>2.0.CO;2
[16] Janssen P. (2012) Ocean wave effects on the daily cycle in SST. J. Geophys. Res. Oceans 117, C00J32. (doi:10.1029/2012JC007943) · doi:10.1029/2012JC007943
[17] Sullivan PP, McWilliams JC. (2010) Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 19-42. (doi:10.1146/annurev-fluid-121108-145541) · Zbl 1345.76032 · doi:10.1146/annurev-fluid-121108-145541
[18] Ursell F. (1953) The long-wave paradox in the theory of gravity waves. Math. Proc. Cambridge Phil. Soc. 49, 685-694. (doi:10.1017/S0305004100028887) · Zbl 0052.43107 · doi:10.1017/S0305004100028887
[19] Longuet-Higgins M. (1987) Lagrangian moments and mass transport in stokes waves. J. Fluid Mech. 179, 547-555. (doi:10.1017/S0022112087001654) · Zbl 0629.76017 · doi:10.1017/S0022112087001654
[20] Constantin A, Villari G. (2008) Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 1-18. (doi:10.1007/s00021-005-0214-2) · Zbl 1162.76316 · doi:10.1007/s00021-005-0214-2
[21] Ionescu-Kruse D. (2008) Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13-27. (doi:10.2991/jnmp.2008.15.s2.2) · Zbl 1362.76041 · doi:10.2991/jnmp.2008.15.s2.2
[22] Constantin A, Ehrnström M, Villari G. (2008) Particle trajectories in linear deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336-1344. (doi:10.1016/j.nonrwa.2007.03.003) · Zbl 1154.35429 · doi:10.1016/j.nonrwa.2007.03.003
[23] Constantin A. (2006) The trajectories of particles in Stokes waves. Invent. Math. 166, 523-535. (doi:10.1007/s00222-006-0002-5) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[24] Henry D. (2006) The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not. 2006, 23405. (doi:10.1155/IMRN/2006/23405) · Zbl 1157.35449 · doi:10.1155/IMRN/2006/23405
[25] Nachbin A, Ribeiro-Junior R. (2014) A boundary integral formulation for particle trajectories in Stokes waves. Discret. Contin. Dyn. Syst. 34, 3135-3153. (doi:10.3934/dcds.2014.34.3135) · Zbl 1302.76034 · doi:10.3934/dcds.2014.34.3135
[26] Kenyon KE. (1969) Stokes drift for random gravity waves. J. Geophys. Res. 74, 6991-6994. (doi:10.1029/JC074i028p06991) · doi:10.1029/JC074i028p06991
[27] McIntyre ME. (1981) On the wave momentum myth. J. Fluid Mech. 106, 331-347. (doi:10.1017/S0022112081001626) · Zbl 0471.76016 · doi:10.1017/S0022112081001626
[28] Longuet-Higgins M. (1969) On the transport of mass by time-varying ocean currents. Deep Sea Res. Oceanogr. Abstr. 16, 431-447. (doi:10.1016/0011-7471(69)90031-X) · doi:10.1016/0011-7471(69)90031-X
[29] Phillips OM. (1966) The dynamics of the upper ocean, 2nd edn. Cambridge, UK: Cambridge University Press.
[30] Starr VP. (1947) A momentum integral for surface waves in deep water. J. Mar. Res. 6, 126-135.
[31] Longuet-Higgins MS. (1957) The statistical analysis of a random, moving surface. Phil. Trans. R. Soc. Lond. A 249, 321-387. (doi:10.1098/rsta.1957.0002) · Zbl 0077.12707 · doi:10.1098/rsta.1957.0002
[32] Longuet-Higgins M, Stewart R. (1962) Radiation stress and mass transport in gravity waves, with applications to ‘surf beats’. J. Fluid Mech. 13, 481-504. (doi:10.1017/S0022112062000877) · doi:10.1017/S0022112062000877
[33] Longuet-Higgins M, Stewart R. (1964) Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. 11, 529-562. (doi:10.1016/0011-7471(64)90001-4) · doi:10.1016/0011-7471(64)90001-4
[34] van den Bremer TS, Taylor PH. (2015) Estimates of Lagrangian transport by wave groups: the effects of finite depth and directionality. J. Geophys. Res. 120, 2701-2722. (doi:10.1002/2015JC010712) · doi:10.1002/2015JC010712
[35] Phillips OM. (1960) On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9, 193-217. (doi:10.1017/S0022112060001043) · Zbl 0094.41101 · doi:10.1017/S0022112060001043
[36] Hasselmann K. (1962) On the non-linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech. 12, 481-500. (doi:10.1017/S0022112062000373) · Zbl 0107.21402 · doi:10.1017/S0022112062000373
[37] Sharma J, Dean RG. (1981) Second-order directional seas and associated wave forces. Proc. Offshore Tech. Conf. 4, 2505-2514. (doi:10.2118/8584-PA) · doi:10.2118/8584-PA
[38] Dalzell JR. (1999) A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. (doi:10.1016/S0141-1187(99)00008-5) · doi:10.1016/S0141-1187(99)00008-5
[39] Forristall G. (2000) Wave crest distributions: observations and second-order theory. J. Phys. Oceanogr. 30, 1931-1943. (doi:10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2) · doi:10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
[40] Dysthe KB. (1979) Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105-114. (doi:10.1098/rspa.1979.0154) · Zbl 0429.76014 · doi:10.1098/rspa.1979.0154
[41] Davey A, Stewartson K. (1975) On three dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101-110. (doi:10.1098/rspa.1974.0076) · Zbl 0282.76008 · doi:10.1098/rspa.1974.0076
[42] Haney S, Young WR. (2017) Radiation of internal waves from groups of surface gravity waves. J. Fluid Mech. 829, 280-303. (doi:10.1017/jfm.2017.536) · doi:10.1017/jfm.2017.536
[43] Gerstner FJ. (1802)Theorie der wellen. Abh. König. Böhm. Ges. Wiss.
[44] Froude W. (1862) On the rolling of ships. Trans. Inst. Naval Arch. 3, 45-62.
[45] Rankine WJM. (1863) On the exact form of waves near the surface of deep water. Phil. Trans. R. Soc. Lond. A 153, 127-138. (doi:10.1098/rstl.1863.0006) · doi:10.1098/rstl.1863.0006
[46] Reech F. (1869) Sur la theeorie des ondes liquides periodiques. C. R. Acad. Sci. Paris 68, 1099-1101. · JFM 02.0738.01
[47] Lamb H. (1932) Hydrodynamics, 6th edn. Cambridge, UK: Cambridge University Press. · JFM 26.0868.02
[48] Monismith SG, Cowen E, Nepf HM, Magnaudet J, Thais L. (2007) Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131-147. (doi:10.1017/S0022112006003594) · Zbl 1108.76318 · doi:10.1017/S0022112006003594
[49] Weber JEH. (2011) Do we observe Gerstner waves in wave tank experiments? Wave Motion 48, 301-309. (doi:10.1016/j.wavemoti.2010.11.005) · Zbl 1283.76021 · doi:10.1016/j.wavemoti.2010.11.005
[50] Ursell F, Deacon G. (1950) On the theoretical form of ocean swell on a rotating earth. Geophys. J. Int. 6, 1-8. (doi:10.1111/j.1365-246X.1950.tb02968.x) · Zbl 0041.14102 · doi:10.1111/j.1365-246X.1950.tb02968.x
[51] Hasselmann K. (1970) Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn. 1, 463-502. (doi:10.1080/03091927009365783) · doi:10.1080/03091927009365783
[52] Pollard RT. (1970) Surface waves with rotation: an exact solution. J. Geophys. Res. 75, 5895-5898. (doi:10.1029/JC075i030p05895) · Zbl 0218.76098 · doi:10.1029/JC075i030p05895
[53] Constantin A, Monismith SG. (2017) Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511-528. (doi:10.1017/jfm.2017.223) · Zbl 1387.86009 · doi:10.1017/jfm.2017.223
[54] Craik ADD, Leibovich S. (1976) A rational model for Langmuir circulations. J. Fluid Mech. 73, 401-426. (doi:10.1017/S0022112076001420) · Zbl 0324.76014 · doi:10.1017/S0022112076001420
[55] Andrews DG, McIntyre ME. (1978) An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609-646. (doi:10.1017/S0022112078002773) · Zbl 0426.76025 · doi:10.1017/S0022112078002773
[56] Leibovich S. (1980) On wave-current interaction theories of Langmuir circulations. J. Fluid Mech. 99, 715-724. (doi:10.1017/S0022112080000857) · Zbl 0452.76013 · doi:10.1017/S0022112080000857
[57] Huang NE. (1979) On surface drift currents in the ocean. J. Fluid Mech. 91, 191-208. (doi:10.1017/S0022112079000112) · Zbl 0395.76019 · doi:10.1017/S0022112079000112
[58] Taylor GI. (1921) Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196-212. · JFM 48.0961.01
[59] Bühler O, Holmes-Cerfon M. (2009) Particle dispersion by random waves in rotating shallow water. J. Fluid Mech. 638, 5-26. (doi:10.1017/S0022112009991091) · Zbl 1183.76878 · doi:10.1017/S0022112009991091
[60] Herterich K, Hasselmann K. (1982) The horizontal diffusion of tracers by surface waves. J. Phys. Oceanogr. 12, 704-711. (doi:10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2) · doi:10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2
[61] Pierson WJ, Moskowitz L. (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S A Kitaigorodskii. J. Geophys. Res. 69, 5181-5190. (doi:10.1029/JZ069i024p05181) · doi:10.1029/JZ069i024p05181
[62] Okubo A. (1971) Oceanic diffusion diagrams. Deep Sea Res. Oceanogr. Abstr. 18, 789-802. (doi:10.1016/0011-7471(71)90046-5) · doi:10.1016/0011-7471(71)90046-5
[63] Buick JM, Morrison IG, Durrani TS, Greated CA. (2001) Particle diffusion on a three-dimensional random sea. Exp. Fluids 30, 88-92. (doi:10.1007/s003480000141) · doi:10.1007/s003480000141
[64] Pugliese Carratelli EE, Dentale FF, Reale FF. (2011)On the effects of wave-induced drift and dispersion in the Deepwater Horizon oil spill. In Monitoring and modeling the Deepwater Horizon oil spill: a record-breaking enterprise (eds Y Yonggang, A MacFadyen, Z-G Ji, RH Weisberg), pp. 197-204. Washington, DC: American Geophysical Union.
[65] Spydell M, Feddersen F, Guza RT, Schmidt WE. (2007) Observing surf-zone dispersion with drifters. J. Phys. Oceanogr. 37, 2920-2939. (doi:10.1175/2007JPO3580.1) · doi:10.1175/2007JPO3580.1
[66] Longuet-Higgins M. (1953) Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535-581. (doi:10.1098/rsta.1953.0006) · Zbl 0050.20304 · doi:10.1098/rsta.1953.0006
[67] Craik ADD. (1982) The drift velocity of water waves. J. Fluid Mech. 116, 187-205. (doi:10.1017/S0022112082000421) · doi:10.1017/S0022112082000421
[68] Swan C. (1990) Convection within an experimental wave flume. J. Hydraul. Res. 28, 273-282. (doi:10.1080/00221689009499069) · doi:10.1080/00221689009499069
[69] Swan C, Sleath JFA. (1990) A second approximation to the time-mean Lagrangian drift beneath progressive gravity waves. Ocean Eng. 1, 65-79. (doi:10.1016/0029-8018(90)90015-X) · doi:10.1016/0029-8018(90)90015-X
[70] Umeyama M. (2012) Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc. A 370, 1687-1702. (doi:10.1098/rsta.2011.0450) · Zbl 1250.76042 · doi:10.1098/rsta.2011.0450
[71] Paprota M, Sulisz W, Reda A. (2016) Experimental study of wave-induced mass transport. J. Hydraul. Res. 54, 423-434. (doi:10.1080/00221686.2016.1168490) · doi:10.1080/00221686.2016.1168490
[72] Grue J, Kolaas J. (2017) Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech. 810, R1. (doi:10.1017/jfm.2016.726) · Zbl 1383.76009 · doi:10.1017/jfm.2016.726
[73] Groeneweg J, Klopman G. (1998) Changes of the mean velocity profiles in the combined wave-current motion described in a GLM formulation. J. Fluid Mech. 370, 271-269. (doi:10.1017/S0022112098002018) · Zbl 0928.76034 · doi:10.1017/S0022112098002018
[74] Mei CC, Liu PLF, Carter TG. (1972)Mass transport in water waves. Technical Report no. 146, MIT Rep. Ralph M. Parsons Lab. Water Resources Hydrodynamics.
[75] Webb A, Fox-Kemper B. (2015) Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Model. 96, 49-64. (doi:10.1016/j.ocemod.2014.12.007) · doi:10.1016/j.ocemod.2014.12.007
[76] Herbers THC, Jessen PF, Janssen TT, Colbert DB, MacMahan JH. (2012) Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Ocean. Technol. 29, 944-959. (doi:10.1175/JTECH-D-11-00128.1) · doi:10.1175/JTECH-D-11-00128.1
[77] Thomson J. (2012) Wave Breaking Dissipation Observed with “SWIFT” Drifters. J. Atmos. Ocean. Technol. 29, 1866-1882. (doi:10.1175/JTECH-D-12-00018.1) · doi:10.1175/JTECH-D-12-00018.1
[78] Thomson J, Schwendeman MS, Zippel SF, Moghimi S, Gemmrich J, Rogers WE. (2016) Wave breaking turbulence in the ocean surface layer. J. Phys. Oceanogr. 46, 1857-1870. (doi:10.1175/JPO-D-15-0130.1) · doi:10.1175/JPO-D-15-0130.1
[79] Srokosz MA, Longuet-Higgins MS. (1986) On the skewness of sea-surface elevation. J. Fluid Mech. 164, 487-497. (doi:10.1017/S0022112086002653) · Zbl 0586.76018 · doi:10.1017/S0022112086002653
[80] Longuet-Higgins MS. (1986) Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech. 173, 683-707. (doi:10.1017/S0022112086001325) · Zbl 1245.76011 · doi:10.1017/S0022112086001325
[81] Herbers THC, Janssen TT. (2016) Lagrangian surface wave motion and Stokes drift fluctuations. J. Phys. Oceanogr. 46, 1009-1021. (doi:10.1175/JPO-D-15-0129.1) · doi:10.1175/JPO-D-15-0129.1
[82] Barrick DE, Evans MW, Weber BL. (1977) Ocean surface currents mapped by radar. Science 198, 138-144. (doi:10.1126/science.198.4313.138) · doi:10.1126/science.198.4313.138
[83] Stewart RH, Joy JW. (1974) HF radio measurements of surface currents. Deep Sea Res. Oceanogr. Abstr. 21, 1039-1049. (doi:10.1016/0011-7471(74)90066-7) · doi:10.1016/0011-7471(74)90066-7
[84] Ardhuin F, Rascle N, Belibassakis K. (2008) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model. 20, 35-60. (doi:10.1016/j.ocemod.2007.07.001) · doi:10.1016/j.ocemod.2007.07.001
[85] Jenkins AD. (1987) Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. J. Phys. Oceanogr. 17, 938-951. (doi:10.1175/1520-0485(1987)017<0938:WAWICI>2.0.CO;2) · doi:10.1175/1520-0485(1987)017<0938:WAWICI>2.0.CO;2
[86] Broche P, Demaistre J, Forget P. (1983) Mesure par radar décamétrique cohérent des courants superficiels engendrés par le vent. Oceanol. Acta 6, 43-53.
[87] Ardhuin F, Marié L, Rascle N, Forget P, Roland A. (2009) Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr. 39, 2820-2838. (doi:10.1175/2009JPO4169.1) · doi:10.1175/2009JPO4169.1
[88] Röhrs J, Sperrevik A, Christensen K, Breivik Ø, Broström G. (2015) Comparison of HF radar measurements with Eulerian and Lagrangian surface currents. Ocean Dyn. 65, 679-690. (doi:10.1007/s10236-015-0828-8) · doi:10.1007/s10236-015-0828-8
[89] Smith JA. (2006) Observed variability of ocean wave Stokes drift, and the Eulerian response to passing groups. J. Phys. Oceanogr. 36, 1381-1402. (doi:10.1175/JPO2910.1) · doi:10.1175/JPO2910.1
[90] Hoefel F, Elgar S. (2003) Wave-induced sediment transport and sandbar migration. Science 299, 1885-1887. (doi:10.1126/science.1081448) · doi:10.1126/science.1081448
[91] Svendsen I. (1984) Mass flux and undertow in a surf zone. Coast. Eng. 8, 347-365. (doi:10.1016/0378-3839(84)90030-9) · doi:10.1016/0378-3839(84)90030-9
[92] Guannel G, Özkan Haller HT. (2014) Formulation of the undertow using linear wave theory. Phys. Fluids 26, 056604. (doi:10.1063/1.4872160) · doi:10.1063/1.4872160
[93] Lentz SJ, Fewings M, Howd P, Fredericks J, Hathaway K. (2008) Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38, 2341-2357. (doi:10.1175/2008JPO3986.1) · doi:10.1175/2008JPO3986.1
[94] Xu Z, Bowen A. (1994) Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr. 24, 1850-1866. (doi:10.1175/1520-0485(1994)024<1850:WAWDFI>2.0.CO;2) · doi:10.1175/1520-0485(1994)024<1850:WAWDFI>2.0.CO;2
[95] Kumar N, Feddersen F. (2017) The effect of Stokes drift and transient rip currents on the inner shelf. Part I. No stratification. J. Phys. Oceanogr. 47, 227-241. (doi:10.1175/JPO-D-16-0076.1) · doi:10.1175/JPO-D-16-0076.1
[96] Lentz SJ, Fewings MR. (2012) The wind- and wave-driven inner-shelf circulation. Ann. Rev. Mar. Sci. 4, 317-343. (doi:10.1146/annurev-marine-120709-142745) · doi:10.1146/annurev-marine-120709-142745
[97] Tolman HLet al. (2009)User manual and system documentation of WAVEWATCH III TM version 3.14. Technical Report no. 276, MMAB/NCEP/NOAA.
[98] Hurrell JWet al. (2013) The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339-1360. (doi:10.1175/BAMS-D-12-00121.1) · doi:10.1175/BAMS-D-12-00121.1
[99] Carniel S, Sclavo M, Kantha LH, Clayson CA. (2005) Langmuir cells and mixing in the upper ocean. Il Nuovo Cimento C Geophys. Space Phys. C 28C, 33-54. (doi:10.1393/ncc/i2005-10022-8) · doi:10.1393/ncc/i2005-10022-8
[100] McWilliams JC, Sullivan PP. (2000) Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull. 6, 225-237. (doi:10.1016/S1353-2561(01)00041-X) · doi:10.1016/S1353-2561(01)00041-X
[101] Polton JA, Lewis DM, Belcher SE. (2005) The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 35, 444-457. (doi:10.1175/JPO2701.1) · doi:10.1175/JPO2701.1
[102] Saetra Ø, Albretsen J, Janssen P. (2007) Sea-state-dependent momentum fluxes for ocean modeling. J. Phys. Oceanogr. 37, 2714-2725. (doi:10.1175/2007JPO3582.1) · doi:10.1175/2007JPO3582.1
[103] Skyllingstad ED, Denbo DW. (1994) The role of internal gravity waves in the equatorial current system. J. Phys. Oceanogr. 24, 2093-2110. (doi:10.1175/1520-0485(1994)024<2093:TROIGW>2.0.CO;2) · doi:10.1175/1520-0485(1994)024<2093:TROIGW>2.0.CO;2
[104] Tamura H, Miyazawa Y, Oey L-Y. (2012) The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res. 117, C08021. (doi:10.1029/2012JC008113) · doi:10.1029/2012JC008113
[105] Breivik O, Bidlot J, Janssen PAEM. (2014) Approximate Stokes drift profiles in deep water. J. Phys. Oceanogr. 44, 2433-2445. (doi:10.1175/JPO-D-14-0020.1) · doi:10.1175/JPO-D-14-0020.1
[106] Breivik O, Bidlot J, Janssen PAEM. (2016) A Stokes drift approximation based on the Phillips spectrum. Ocean Model. 100, 49-56. (doi:10.1016/j.ocemod.2016.01.005) · doi:10.1016/j.ocemod.2016.01.005
[107] Hasselmann Set al.(1988) The WAM model—a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775-1810. (doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2) · doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
[108] Holthuijsen L. (2007) Waves in oceanic and coastal waters. Cambridge, UK: Cambridge University Press.
[109] Janssen P. (2004) The interaction of ocean waves and wind. Cambridge, UK: Cambridge University Press.
[110] Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM. (1994) Dynamics and modelling of ocean waves. Cambridge, UK: Cambridge University Press. · Zbl 0816.76001
[111] Ris RC, Holthuijsen LH, Booij N. (1999) A third-generation wave model for coastal regions 2. Verification. J. Geophys. Res. 104, 7667-7681. (doi:10.1029/1998JC900123) · doi:10.1029/1998JC900123
[112] Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald VM. (2002) Development and implementation of wind-generated ocean surface wave models at NCEP. Weather Forecast. 17, 311-333. (doi:10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2) · doi:10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2
[113] Babanin AV, Ganopolski A, Phillips WR. (2009) Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Model. 29, 189-197. (doi:10.1016/j.ocemod.2009.04.003) · doi:10.1016/j.ocemod.2009.04.003
[114] Fan Y, Griffies SM. (2014) Impacts of parameterized Langmuir turbulence and non-breaking wave mixing in global climate simulations. J. Clim. 27, 4752-4775. (doi:10.1175/JCLI-D-13-00583.1) · doi:10.1175/JCLI-D-13-00583.1
[115] Breivik Ø, Mogensen K, Bidlot J-R, Balmaseda MA, Janssen PA. (2015) Surface wave effects in the NEMO ocean model: forced and coupled experiments. J. Geophys. Res. Oceans 120, 2973-2992. (doi:10.1002/2014JC010565) · doi:10.1002/2014JC010565
[116] D’Asaro EA, Thomson J, Shcherbina AY, Harcourt RR, Cronin MF, Hemer MA, Fox-Kemper B. (2014) Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 41, 102-107. (doi:10.1002/2013GL058193) · doi:10.1002/2013GL058193
[117] Belcher SEet al. (2012) A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39, L18605. (doi:10.1029/2012GL052932) · doi:10.1029/2012GL052932
[118] Sheldon L, Czaja A. (2014) Seasonal and interannual variability of an index of deep atmospheric convection over western boundary currents. Q. J. R. Meteorol. Soc. 140, 22-30. (doi:10.1002/qj.2103) · doi:10.1002/qj.2103
[119] Shchepetkin AF, McWilliams JC. (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9, 347-404. (doi:10.1016/j.ocemod.2004.08.002) · doi:10.1016/j.ocemod.2004.08.002
[120] Madec G. (2008)Nemo ocean engine. Note du Pole de modélisation 27, Institut Pierre Simon Laplace.
[121] Uchiyama Y, McWilliams JC, Shchepetkin AF. (2010) Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Model. 34, 16-35. (doi:10.1016/j.ocemod.2010.04.002) · doi:10.1016/j.ocemod.2010.04.002
[122] Kumar N, Voulgaris G, Warner JC, Olabarrieta M. (2012) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 47, 65-95. (doi:10.1016/j.ocemod.2012.01.003) · doi:10.1016/j.ocemod.2012.01.003
[123] Warner JC, Armstrong B, He R, Zambon JB. (2010) Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 35, 230-244. (doi:10.1016/j.ocemod.2010.07.010) · doi:10.1016/j.ocemod.2010.07.010
[124] Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG. (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 34, 1284-1306. (doi:10.1016/j.cageo.2008.02.012) · doi:10.1016/j.cageo.2008.02.012
[125] Mogensen KS, Magnusson L, Bidlot J-R. (2017) Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans 122, 4392-4412. (doi:10.1002/2017JC012753) · doi:10.1002/2017JC012753
[126] Alari V, Staneva J, Breivik Ø, Bidlot J-R, Mogensen K, Janssen P. (2016) Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dyn. 66, 917-930. (doi:10.1007/s10236-016-0963-x) · doi:10.1007/s10236-016-0963-x
[127] Staneva J, Alari V, Breivik Ø, Bidlot J-R, Mogensen K. (2017) Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dyn. 67, 81-101. (doi:10.1007/s10236-016-1009-0) · doi:10.1007/s10236-016-1009-0
[128] McWilliams JC, Restrepo J. (1999) The wave-driven ocean circulation. J. Phys. Oceanogr. 29, 2523-2540. (doi:10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2) · doi:10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
[129] Broström G, Christensen KH, Drivdal M, Weber JE. (2014) Note on Coriolis-Stokes force and energy. Ocean Dyn. 64, 1039-1045. (doi:10.1007/s10236-014-0723-8) · doi:10.1007/s10236-014-0723-8
[130] Paskyabi MB, Fer I, Jenkins AD. (2012) Surface gravity wave effects on the upper ocean boundary layer: modification of a one-dimensional vertical mixing model. Cont. Shelf Res. 38, 63-78. (doi:10.1016/j.csr.2012.03.002) · doi:10.1016/j.csr.2012.03.002
[131] McWilliams J, Sullivan P, Moeng C-H. (1997) Langmuir turbulence in the ocean. J. Fluid Mech. 334, 1-30. (doi:10.1017/S0022112096004375) · Zbl 0887.76029 · doi:10.1017/S0022112096004375
[132] Langmuir I. (1938) Surface motion of water induced by wind. Science 87, 119-123. (doi:10.1126/science.87.2250.119) · doi:10.1126/science.87.2250.119
[133] Faller AJ, Caponi EA. (1978) Laboratory studies of wind-driven Langmuir circulations. J. Geophys. Res. 83, 3617-3633. (doi:10.1029/JC083iC07p03617) · doi:10.1029/JC083iC07p03617
[134] Suzuki N, Fox-Kemper B. (2016) Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans 121, 3579-3596. (doi:10.1002/2015JC011566) · doi:10.1002/2015JC011566
[135] Grant AL, Belcher SE. (2009) Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr. 39, 1871-1887. (doi:10.1175/2009JPO4119.1) · doi:10.1175/2009JPO4119.1
[136] Harcourt RR, D’Asaro EA. (2008) Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr. 38, 1542-1562. (doi:10.1175/2007JPO3842.1) · doi:10.1175/2007JPO3842.1
[137] Polton JA, Belcher SE. (2007) Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res. 112, C09020. (doi:10.1029/2007JC004205) · doi:10.1029/2007JC004205
[138] Ardhuin F, Jenkins A. (2006) On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr. 36, 551-557. (doi:10.1175/2009JPO2862.1) · doi:10.1175/2009JPO2862.1
[139] Teixeira M, Belcher S. (2002) On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229-267. (doi:10.1017/S0022112002007838) · Zbl 1112.76377 · doi:10.1017/S0022112002007838
[140] Large WG, McWilliams JC, Doney SC. (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363-403. (doi:10.1029/94RG01872) · doi:10.1029/94RG01872
[141] Smyth WD, Skyllingstad ED, Crawford GB, Wijesekera H. (2002) Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn. 52, 104-115. (doi:10.1007/s10236-002-0012-9) · doi:10.1007/s10236-002-0012-9
[142] Takaya Y, Bidlot J-R, Beljaars A, Janssen PA. (2010) Refinements to a prognostic scheme of skin sea surface temperature. J. Geophys. Res. Oceans 115, C06009. (doi:10.1029/2009JC005985) · doi:10.1029/2009JC005985
[143] Van Roekel LP, Fox-Kemper B, Sullivan PP, Hamlington PE, Haney SR. (2012) The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res. Oceans 117, C05001. (doi:10.1029/2011JC007516) · doi:10.1029/2011JC007516
[144] McWilliams JC, Huckle E, Liang J, Sullivan P. (2014) Langmuir turbulence in swell. J. Phys. Oceanogr. 44, 870-890. (doi:10.1175/JPO-D-13-0122.1) · doi:10.1175/JPO-D-13-0122.1
[145] Li Q, Webb A, Fox-Kemper B, Craig A, Danabasoglu G, Large WG, Vertenstein M. (2016) Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Model. 103, 145-160. (doi:10.1016/j.ocemod.2015.07.020) · doi:10.1016/j.ocemod.2015.07.020
[146] Li Q, Fox-Kemper B, Breivik Ø, Webb A. (2017) Statistical models of global Langmuir mixing. Ocean Model. 113, 95-114. (doi:10.1016/j.ocemod.2017.03.016) · doi:10.1016/j.ocemod.2017.03.016
[147] Mellor GL, Yamada T. (1982) Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851-875. (doi:10.1029/RG020i004p00851) · doi:10.1029/RG020i004p00851
[148] Kantha LH, Clayson CA. (1994) An improved mixed layer model for geophysical applications. J. Geophys. Res. Oceans 99, 25235-25266. (doi:10.1029/94JC02257) · doi:10.1029/94JC02257
[149] Umlauf L, Burchard H. (2003) A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 61, 235-265. (doi:10.1357/002224003322005087) · doi:10.1357/002224003322005087
[150] Kantha LH, Clayson CA. (2004) On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Model. 6, 101-124. (doi:10.1016/S1463-5003(02)00062-8) · doi:10.1016/S1463-5003(02)00062-8
[151] Kantha LH, Clayson CA. (2000) Small scale processes in geophysical fluid flows, vol. 67. New York, NY: Academic Press. · Zbl 0989.76002
[152] Stull RB. (1988) An introduction to boundary layer meteorology. New York, NY: Kluwer. · Zbl 0752.76001
[153] Harcourt R. (2013) A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr. 43, 673-697. (doi:10.1175/JPO-D-12-0105.1) · doi:10.1175/JPO-D-12-0105.1
[154] Harcourt R. (2015) An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr. 45, 84-103. (doi:10.1175/JPO-D-14-0046.1) · doi:10.1175/JPO-D-14-0046.1
[155] Röhrs J, Christensen KH, Hole LR, Broström G, Drivdal M, Sundby S. (2013) Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn. 62, 1519-1533. (doi:10.1007/s10236-012-0576-y) · doi:10.1007/s10236-012-0576-y
[156] Drivdal M, Broström G, Christensen K. (2014) Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill. Ocean Sci. 10, 977-991. (doi:10.5194/os-10-977-2014) · doi:10.5194/os-10-977-2014
[157] Umlauf L, Burchard H. (2005) Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25, 795-827. (doi:10.1016/j.csr.2004.08.004) · doi:10.1016/j.csr.2004.08.004
[158] Jones C, Dagestad K-F, Breivik Ø, Holt B, Röhrs J, Christensen K, Espeseth M, Brekke C, Skrunes S. (2016) Measurement and modeling of oil slick transport. J. Geophys. Res. Oceans 121, 7759-7775. (doi:10.1002/2016JC012113) · doi:10.1002/2016JC012113
[159] Breivik Ø, Allen A, Maisondieu C, Olagnon M. (2013) Advances in search and rescue at sea. Ocean Dyn. 63, 83-88. (doi:10.1007/s10236-012-0581-1) · doi:10.1007/s10236-012-0581-1
[160] Breivik Ø, Allen A, Maisondieu C, Roth J-C, Forest B. (2012) The leeway of shipping containers at different immersion levels. Ocean Dyn. 62, 741-752. (doi:10.1007/s10236-012-0522-z) · doi:10.1007/s10236-012-0522-z
[161] Breivik Ø, Allen AA, Maisondieu C, Roth JC. (2011) Wind-induced drift of objects at sea: the leeway field method. Appl. Ocean Res. 33, 100-109. (doi:10.1016/j.apor.2011.01.005) · doi:10.1016/j.apor.2011.01.005
[162] Breivik Ø, Allen AA. (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J. Mar. Syst. 69, 99-113. (doi:10.1016/j.jmarsys.2007.02.010) · doi:10.1016/j.jmarsys.2007.02.010
[163] Trinanes JA, Olascoaga MJ, Goni GJ, Maximenko NA, Griffin DA, Hafner J. (2016) Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. J. Oper. Oceanogr. 9, 126-138. (doi:10.1080/1755876X.2016.1248149) · doi:10.1080/1755876X.2016.1248149
[164] van Sebille E, England MH, Froyland G. (2012) Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett. 7, 044040. (doi:10.1088/1748-9326/7/4/044040) · doi:10.1088/1748-9326/7/4/044040
[165] van Sebille Eet al. (2015) A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006. (doi:10.1088/1748-9326/10/12/124006) · doi:10.1088/1748-9326/10/12/124006
[166] Wilcox C, Van Sebille E, Hardesty BD. (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl Acad. Sci. USA 112, 11 899-11 904. (doi:10.1073/pnas.1502108112) · doi:10.1073/pnas.1502108112
[167] Kukulka T, Proskurowski G, Morét-Ferguson S, Meyer DW, Law KL. (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, L07601. (doi:10.1029/2012GL051116) · doi:10.1029/2012GL051116
[168] Eames I. (2008) Settling of particles beneath water waves. J. Phys. Oceanogr. 38, 2846-2853. (doi:10.1175/2008JPO3793.1) · doi:10.1175/2008JPO3793.1
[169] Santamaria F, Boffetta F, Martins A, Onorato M, Pugliese D. (2013) Stokes drift for inertial particles transported by water waves. Europhys. Lett. 102, 14003. (doi:10.1209/0295-5075/102/14003) · doi:10.1209/0295-5075/102/14003
[170] Haller G. (2015) Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137-162. (doi:10.1146/annurev-fluid-010313-141322) · doi:10.1146/annurev-fluid-010313-141322
[171] Allshouse MR, Ivey GN, Lowe RJ, Jones NL, Beegle-Krause CJ, Xu J, Peacock T. (2017) Impact of windage on ocean surface Lagrangian coherent structures. Environ. Fluid Mech. 17, 473-483. (doi:10.1007/s10652-016-9499-3) · doi:10.1007/s10652-016-9499-3
[172] Carrasco A, Semedo A, Isachsen PE, Christensen KH, Saetra Ø. (2014) Global surface wave drift climate from ERA-40: the contributions from wind-sea and swell. Ocean Dyn. 64, 1815-1829. (doi:10.1007/s10236-014-0783-9) · doi:10.1007/s10236-014-0783-9
[173] Chapron B, Collard F, Ardhuin F. (2005) Direct measurements of ocean surface velocity from space: interpretation and validation. J. Geophys. Res. Oceans 110, C07008. (doi:10.1029/2004JC002809) · doi:10.1029/2004JC002809
[174] Jenkins AD. (1989) The use of a wave prediction model for driving a near-surface current model. Deutsch Hydrogr. Z. 42, 133-149. (doi:10.1007/BF02226291) · doi:10.1007/BF02226291
[175] Ardhuin Fet al. (2017) Measuring currents, ice drift, and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept. Preprint. Ocean Sci. (doi:10.5194/os-2017-65) · doi:10.5194/os-2017-65
[176] Doble MJ, Bidlot J-R. (2013) Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: progress towards global waves-in-ice modelling. Ocean Model. 70, 166-173. (doi:10.1016/j.ocemod.2013.05.012) · doi:10.1016/j.ocemod.2013.05.012
[177] Ardhuin F, Tournadre J, Queffeulou P, Girard-Ardhuin F, Collard F. (2011) · doi:10.1016/j.ocemod.2011.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.