×

The SIS and SIR stochastic epidemic models: a maximum entropy approach. (English) Zbl 1322.92067

Summary: We analyze the dynamics of infectious disease spread by formulating the maximum entropy (MEME) solutions of the susceptible-infected-susceptible (SISSIS) and the susceptible-infected-removed (SIRSIR) stochastic models. Several scenarios providing helpful insight into the use of the MEME formalism for epidemic modeling are identified. The MEME results are illustrated with respect to several descriptors, including the number of recovered individuals and the time to extinction. An application to infectious data from outbreaks of extended spectrum beta lactamase (ESBLESBL) in a hospital is also considered.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, N.; Alhassid, Y.; Levine, R. D., An algorithm for finding the distribution of maximal entropy, J. Comput. Phys., 30, 250-258 (1979) · Zbl 0406.65034
[2] Allen, L. J.S., An Introduction to Stochastic Processes with Applications to Biology (2003), Prentice-Hall: Prentice-Hall New Jersey · Zbl 1205.60001
[3] Andersson, H.; Britton, T., (Stochastic Epidemic Models and their Statistical Analysis. Stochastic Epidemic Models and their Statistical Analysis, Lecture Notes in Statistics, vol. 151 (2000), Springer: Springer New York) · Zbl 0951.92021
[4] Artalejo, J. R.; Economou, A.; Lopez-Herrero, M. J., On the number of recovered individuals in the SIS and SIR stochastic epidemic models, Math. Biosci., 228, 45-55 (2010) · Zbl 1200.92035
[5] Artalejo, J.R., Economou, A., Lopez-Herrero, M.J., 2011. Stochastic epidemic models revisited: analysis of some continuous performance measures. J. Biol. Dyn., in press (doi:10.1080/17513758.2011.552737; Artalejo, J.R., Economou, A., Lopez-Herrero, M.J., 2011. Stochastic epidemic models revisited: analysis of some continuous performance measures. J. Biol. Dyn., in press (doi:10.1080/17513758.2011.552737
[6] Artalejo, J. R.; Lopez-Herrero, M. J., The M/G/1 retrial queue: an information theoretic approach, SORT, 29, 119-137 (2005) · Zbl 1274.60267
[7] Artalejo, J. R.; Lopez-Herrero, M. J., Quasi-stationarity and ratio of expectations: a comparative study, J. Theoret. Biol., 266, 264-274 (2010) · Zbl 1407.92123
[8] Awan, I.; Ahmad, B.; Ahmad, S., Performance analysis of networks of queues under active queue management scheme, Simul. Modell. Pract. Theory, 15, 416-425 (2007)
[9] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases and its Applications (1975), Charles Griffin & Company Ltd.: Charles Griffin & Company Ltd. London · Zbl 0115.37202
[10] Ball, F., A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models, Adv. Appl. Probab., 18, 289-310 (1986) · Zbl 0606.92018
[11] Ball, F.; Sirl, D.; Trapman, P., Threshold behaviour and final outcome of an epidemic on a random network with household structure, Adv. Appl. Probab., 41, 765-796 (2009) · Zbl 1176.92042
[12] Becker, N. G., Analysis of Infectious Disease Data (1989), Chapman & Hall: Chapman & Hall London
[13] Becker, N. G.; Britton, T., Statistical studies of infectious disease incidence, J. R. Stat. Soc. Ser. B, 61, 287-307 (1999) · Zbl 0913.62102
[14] Bolch, G.; Greiner, S.; de Meer, H.; Trivedi, K. S., Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (1998), John Wiley & Sons: John Wiley & Sons New York · Zbl 0917.60008
[15] Britton, T., Stochastic epidemic models: a survey, Math. Biosci., 225, 24-35 (2010) · Zbl 1188.92031
[16] Cao, C. X.; Xu, M.; Chang, C. Y.; Xue, Y.; Zhong, S. B.; Fang, L. Q.; Cao, W. C.; Zhang, H.; Gao, M. X.; He, Q. S.; Zhao, J.; Chen, W.; Zheng, S.; Li, X. W., Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-modeling, Chinese Sci. Bull., 55, 4168-4178 (2010)
[17] Chauchemez, S.; Ferguson, N. M., Likelihood-based estimation of continuous-time epidemic models from time-series data: an application to measles transmission in London, J. R. Soc. Interface, 5, 885-897 (2008)
[18] Chernick, M. R., Bootstrap Methods: A Guide for Practitioners and Researchers (2008), John Wiley & Sons: John Wiley & Sons Hoboken · Zbl 1136.62029
[19] Christakos, G.; Olea, R. A.; Yu, H.-L., Recent results on the spatiotemporal modelling and comparative analysis of Black Death and bubonic plague epidemics, Public Health, 121, 700-720 (2007)
[20] Cintrón-Arias, A.; Castillo-Chávez, C.; Bettencourt, L. M.A.; Lloyd, A. L.; Banks, H. T., The estimation of the effective reproductive number from disease outbreak data, Math. Biosci. Eng., 6, 261-282 (2009) · Zbl 1166.62080
[21] Clancy, D.; Mendy, S. T., The effect of waning immunity on long-term behaviour of stochastic models for the spread of infection, J. Math. Biol., 61, 527-544 (2010) · Zbl 1204.92055
[22] Clancy, D.; O’Neill, P. D., Bayesian estimation of the basic reproduction number in stochastic epidemic models, Bayesian Anal., 3, 737-758 (2008) · Zbl 1330.62382
[23] Corani, G.; Gatto, M., Structural risk minimization: a robust method for density-dependence detection and model selection, Ecography, 30, 400-416 (2007)
[24] Daley, D. J.; Gani, J., Epidemic Modelling: An Introduction, Cambridge Studies in Mathematical Biology, vol. 15 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0922.92022
[25] Demiris, N.; O’Neill, P. D., Computation of final outcome probabilities for the generalised stochastic epidemic, Stat. Comput., 16, 309-317 (2006)
[26] Gesink Law, D. C.; Bernstein, K. T.; Serre, M. L.; Schumacher, C. M.; Leone, P. A.; Zenilman, J. M.; Miller, W. C.; Rompalo, A. M., Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach, Ann. Epidemiol., 16, 797-804 (2006)
[27] Gómez-Corral, A., López-García, M., 2011. Extinction times and size of the surviving species in a two-species competition process. J. Math. Biol., in press (doi:10.1007/s00285-011-0414-8; Gómez-Corral, A., López-García, M., 2011. Extinction times and size of the surviving species in a two-species competition process. J. Math. Biol., in press (doi:10.1007/s00285-011-0414-8
[28] Hao, Z.; Singh, V. P., Entropy-based parameter estimation for extended Burr XII distribution, Stoch. Environ. Res. Risk Assess., 23, 1113-1122 (2009) · Zbl 1416.62124
[29] Jiang, L.; Walrand, J., (Scheduling and Congestion Control for Wireless and Processing Networks. Scheduling and Congestion Control for Wireless and Processing Networks, Synthesis Lectures on Communication Networks, vol. 6 (2010), Morgan & Claypool Publishers) · Zbl 1270.68013
[30] Kapur, J. N.; Kesavan, H. K., Entropy Optimization Principles with Applications (1992), Academic Press: Academic Press Boston · Zbl 0718.62007
[31] Keeling, M. J.; Ross, J. V., On methods for studying stochastic disease dynamics, J. R. Soc. Interface, 5, 171-181 (2008)
[32] Kouvatsos, D. D., Entropy maximization and queueing network models, Ann. Oper. Res., 48, 63-126 (1994) · Zbl 0789.90032
[33] Krishnarajah, I.; Cook, A.; Marion, G.; Gibson, G., Novel moment closure approximations in stochastic epidemics, Bull. Math. Biol., 67, 855-873 (2005) · Zbl 1334.92411
[34] Kroese, D. P.; Taimre, T.; Botev, Z. I., (Handbook of Monte Carlo Methods. Handbook of Monte Carlo Methods, Wiley Series in Probability and Statistics (2011), John Wiley & Sons: John Wiley & Sons New York) · Zbl 1213.65001
[35] Meester, R.; Koning, J.; Jong, M. C.M.; Diekmann, O., Modeling and real-time prediction of classical swine fever epidemics, Biometrics, 58, 178-184 (2002) · Zbl 1209.62313
[36] Menéndez, M. L.; Pardo, J. A.; Pardo, M. C., Estimators based on sample quantiles using \((h, \phi)\)-entropy measures, Appl. Math. Lett., 11, 99-104 (1998) · Zbl 0944.62006
[37] Mkwawa, I.-H. M.; Kouvatsos, D. D.; Brandstätter, W.; Horak, G.; Geier, A.; Cavadias, C., Performance modelling and evaluation of a mobility management mechanism in IMS-based networks, (Lecture Notes in Computer Science, vol. 5233 (2011), Springer-Verlag: Springer-Verlag Berlin), 594-611
[38] Nåsell, I., The threshold concept in stochastic epidemic and endemic models, (Mollison, D., Epidemic Models: Their Structure and Relation to Data (1995), Cambridge University Press: Cambridge University Press Cambridge), 71-83 · Zbl 0850.92047
[39] Nåsell, I., Extinction and quasi-stationarity in the Verhulst logistic model, J. Theoret. Biol., 211, 11-27 (2001)
[40] Nåsell, I., Stochastic models of some endemic infections, Math. Biosci., 179, 1-19 (2002) · Zbl 0991.92026
[41] Noonan, J. P.; Basu, P., On estimation error using maximum entropy density estimates, Kybernetes, 36, 52-64 (2007) · Zbl 1128.93053
[42] O’Neill, P. D., A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods, Math. Biosci., 180, 103-114 (2002) · Zbl 1021.62094
[43] Phillips, S. J.; Anderson, R. P.; Schapire, R. E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231-259 (2006)
[44] Press, W. H.; Teuklosky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran: The Art of Parallel Scientific Computing (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0892.65001
[45] Ross, J. V.; House, T.; Keeling, M. J., Calculation of disease dynamics in a population of households, PloS One, 5, 3, e9696 (2010)
[46] Ross, J. V.; Pagendam, D. E.; Pollett, P. K., On parameter estimation in population models II: multi-dimensional processes and transient dynamics, Theor. Popul. Biol., 75, 123-132 (2009) · Zbl 1211.92050
[47] Ross, J. V.; Taimre, T.; Pollett, P. K., On parameter estimation in population models, Theor. Popul. Biol., 70, 498-510 (2006) · Zbl 1118.92052
[48] Sharkey, K. J., Deterministic epidemic models on contact networks: correlations and unbiological terms, Theoret. Popul. Biol., 79, 115-129 (2011) · Zbl 1338.92140
[49] Shore, J. E.; Johnson, R. W., Properties of cross-entropy minimization, IEEE Trans. Inform. Theory, 27, 472-482 (1981) · Zbl 0459.94008
[50] Sumi, A.; Kamo, K.-I.; Ohtomo, N.; Mise, K.; Kobayashi, N., Time series analysis of incidence data of influenza in Japan, J. Epidemiol., 21, 21-29 (2011)
[51] Václavík, T.; Kanaskie, A.; Hansen, E. M.; Ohmann, J. L.; Meentemeyer, R. K., Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks, For. Ecol. Manag., 260, 1026-1035 (2010)
[52] van Doorn, E. A.; Pollett, P. K., Survival in a quasi-death process, Linear Algebra Appl., 429, 776-791 (2008) · Zbl 1148.60056
[53] van Doorn, E.A., Pollett, P.K., 2011. Quasi-stationary distributions. Memorandum 1945. ISSN: 1874-4850. Available from: http://www.math.utwente.nl/publications; van Doorn, E.A., Pollett, P.K., 2011. Quasi-stationary distributions. Memorandum 1945. ISSN: 1874-4850. Available from: http://www.math.utwente.nl/publications · Zbl 1184.60026
[54] Welch, D.; Bansal, S.; Hunter, D. R., Statistical inference to advance network models in epidemiology, Epidemics, 3, 38-45 (2011)
[55] Yu, H.-L.; Yang, S.-J.; Yen, H.-J.; Christakos, G., A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan, Stoch. Environ. Res. Risk Assess., 25, 485-494 (2011)
[56] zu Dohna, H.; Pineda-Krch, M., Fitting parameters of stochastic birth-death models to metapopulation data, Theoret. Popul. Biol., 78, 71-76 (2010) · Zbl 1338.92119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.