×

Modeling of high-density compaction of granular materials by the discrete element method. (English) Zbl 1167.74371

Summary: Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force-displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.

MSC:

74E20 Granularity
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belheine, N.; Plassiard, J. P.; Donzé, F. V.; Darve, F.; Seridi, A.: Numerical simulation of drained triaxial test using 3d discrete element modeling, Computers and geotechnics 36, No. 1 – 2, 320-331 (2009)
[2] Chen, Y., 2008. Contribution a la modélisation de la compression des poudres par une methode d’éléments discrets maillés. Ph.D. thesis, Institut Polytechnique de Grenoble.
[3] Chen, Y.; Imbault, D.; Dorémus, P.: Numerical simulation of cold compaction of 3d granular packings, Materials science forum, 301-304 (2006)
[4] Cundall, P. A.; Strack, O. D. L.: A discrete numerical model for granular assemblies, Geotechnique 29, 47-65 (1979)
[5] Donzé, F. V.; Richefeu, V.; Magnier, S. -A.: Advances in discrete element method applied to soil, rock and concrete mechanics, in: state of the art of geotechnical engineering, Electronic journal of geotechnical engineering, 44 (2009)
[6] Drucker, D. C.; Prager, W.: Soil mechanics and plastic analysis or limit design, Quarterly journal of mechanics and applied mathematics 10, 157-175 (1952) · Zbl 0047.43202
[7] Frenning, G.: An efficient finite/discrete element procedure for simulating compression of 3d particle assemblies, Computer methods in applied mechanics and engineering 197, 4266-4272 (2008) · Zbl 1194.74398 · doi:10.1016/j.cma.2008.05.002
[8] Gellatly, B. J.; Finney, J. L.: Calculation of protein volumes: an alternative to the Voronoi procedure, Journal of molecular biology 161, 305-322 (1982)
[9] Gellatly, B. J.; Finney, J. L.: Characterisation of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron, Journal of non-crystalline solids 50, 313-329 (1982)
[10] Gethin, D. T.; Lewis, R. W.; Ransing, R. S.: A discrete deformable element approach for the compaction of powder systems, Modelling and simulation in materials science and engineering 11, 101-114 (2003)
[11] Heyliger, P. R.; Mcmeeking, R. M.: Cold plastic compaction of powders by a network model, Journal of the mechanics and physics of solids 49, 2031-2054 (2001) · Zbl 0998.74026 · doi:10.1016/S0022-5096(01)00038-2
[12] Kozicki, J.; Donzé, F. -V.: A new open-source software developed for numerical simulations using discrete modelling methods, Computer methods in applied mechanics and engineering 197, 4429-4443 (2008) · Zbl 1194.74002 · doi:10.1016/j.cma.2008.05.023
[13] Landau, L., Lifchitz, E., 1967. Théorie de l’élasticité (Theory of Elasticity), second ed. Les Éditions Mir Moscou. · Zbl 0166.43101
[14] Martin, C. L.: Elasticity, fracture and yielding of cold compacted metal powders, Journal of the mechanics and physics of solids 52, 1691-1717 (2004) · Zbl 1062.74523 · doi:10.1016/j.jmps.2004.03.004
[15] Martin, C. L.; Bouvard, D.: Study of the cold compaction of composite powders by the discrete element method, Acta materialia 51, 373-386 (2003)
[16] Martin, C. L.; Bouvard, D.; Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method, Journal of the mechanics and physics of solids 51, 667-693 (2003) · Zbl 1091.74504 · doi:10.1016/S0022-5096(02)00101-1
[17] Mesarovic, S. D.; Fleck, N. A.: Spherical indentation of elastic – plastic solids, Proceedings of the royal society of London A 455, 2707-2728 (1999) · Zbl 1062.74662 · doi:10.1098/rspa.1999.0423
[18] Mesarovic, S. D.; Fleck, N. A.: Frictionless indentation of dissimilar elastic – plastic spheres, International journal of solids and structures 37, 7071-7091 (2000) · Zbl 1007.74057 · doi:10.1016/S0020-7683(99)00328-5
[19] Procopio, A. T.; Zavaliangos, A.: Simulation of multi-axial compaction of granular media from loose to high relative densities, Journal of the mechanics and physics of solids 53, 1523-1551 (2005) · Zbl 1120.74411 · doi:10.1016/j.jmps.2005.02.007
[20] Skrinjar, O.; Larsson, P. -L.: On discrete element modelling of compaction of powders with size ratio, Computational materials science 31, 131-146 (2004)
[21] Storåkers, B.; Biwa, S.; Larsson, P. -L.: Similarity analysis of inelastic contact, International journal of solids and structures 34, 3061-3083 (1997) · Zbl 0939.74573 · doi:10.1016/S0020-7683(96)00176-X
[22] Storåkers, B.; Fleck, N. A.; Mcmeeking, R. M.: The viscoplastic compaction of composite powders, Journal of the mechanics and physics of solids 47, 785-815 (1999) · Zbl 0971.74025 · doi:10.1016/S0022-5096(98)00076-3
[23] Vu-Quoc, L.; Zhang, X.; Lesburg, L.: Normal and tangential force – displacement relations for frictional elasto-plastic contact of spheres, International journal of solids and structures 38, 6455-6489 (2001) · Zbl 1090.74643 · doi:10.1016/S0020-7683(01)00065-8
[24] Wu, C. -Y.; Cocks, A. C. F.; Gillia, O.: Die filling and powder transfer, International journal of powder metallurgy 39, 51-64 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.