×

Determination of mechanical properties by instrumented indentation. (English) Zbl 1162.74415

Summary: The paper reviews the current state of the depth-sensing indentation (sometimes called nanoindentation), where the information on material behaviour and properties is obtained from the indenter load and depth, measured continuously during loading and unloading. It is shown how the contact parameters and principal characteristics are determined using pointed or spherical indenters. Indentation tests can be used for the measurement of hardness and elastic modulus, and also of the yield stress and for the construction of stress-strain diagrams, for the determination of the work of indentation and its components. Most devices use monotonic loading and unloading, but some also enable measurement under a small harmonic signal added to the basic monotonously increasing load. This makes possible continuous measurement of contact stiffness and the study of dynamic properties and the determination of properties of coatings. One section is devoted to the measurement on viscoelastic-plastic materials, where the delayed deforming must be considered during the measurement as well as in data evaluation. Instrumented indentation can also be used for the study of creep under high temperatures. The paper also discusses the errors arising in depth-sensing measurements and informs briefly about some other possibilities of the method.

MSC:

74M15 Contact in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ISO 14577. Metallic materials – Instrumented indentation test for hardness and materials parameters. Part 1 – Test method, Part 2: Verification and calibration of testing machines, Part 3: Calibration of reference blocks, Part 4: Test method for metallic and non-metallic coatings, 2002–2004
[2] Fischer-Cripps AC (2002) Nanoindentation. Springer, New York
[3] Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583 · doi:10.1557/JMR.1992.1564
[4] Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20 · doi:10.1557/jmr.2004.19.1.3
[5] Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Engng Sci 3:47–51 · Zbl 0128.42002 · doi:10.1016/0020-7225(65)90019-4
[6] Tabor H (1951) Hardness of metals. Clarendon Press, Oxford
[7] Herbert EG, Pharr GM, Oliver WC, Lucas BN, Hay JL (2001) On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399: 331–335 · doi:10.1016/S0040-6090(01)01439-0
[8] Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge · Zbl 0599.73108
[9] Mesarovic SDj, Fleck NA (1999) Spherical indentation into elastic-plastic solids. Proc R Soc Lond A 455:2707–2728 · Zbl 1062.74662 · doi:10.1098/rspa.1999.0423
[10] Menčík J (2006) Determination of stress-strain curves by instrumented indentation. 23rd Danubia Adria symposium on experimental methods in solid mechanics, Podbanské, 26–29 Sept 2006, University of Žilina
[11] Field J, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8:297–306 · doi:10.1557/JMR.1993.0297
[12] Kružík M, Mielke A, Roubíček T (2005) Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40:389–418 · Zbl 1106.74048 · doi:10.1007/s11012-005-2106-1
[13] Sakai M (1993) Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall Mater 40:1751–1758
[14] Menčík J, Swain MV (1994) Characterisation of materials using micro-indentation tests with pointed indenters. Mater Forum 18:277–288
[15] Menčík J, Munz D, Quandt E, Weppelmann ER, Swain MV (1997) Determination of elastic modulus of thin layers using nanoindentation. J Mater Res 12:2475–2484 · doi:10.1557/JMR.1997.0327
[16] Gao H, Chiu CH, Lee J (1992) Elastic contact versus indentation modelling of multilayered materials. Int J Solids Struct 29:2471–2492 · doi:10.1016/0020-7683(92)90004-D
[17] Burnett PJ, Rickerby DS (1987) The mechanical properties of wear resistant coatings I, II: modelling of hardness behaviour. Thin Solid Films 148:41–65 · doi:10.1016/0040-6090(87)90119-2
[18] Jönsson B, Hogmark S (1984) Hardness measurement of thin films. Thin Solid Films 114:257–269 · doi:10.1016/0040-6090(84)90123-8
[19] Bhattacharya AK, Nix WD (1988) Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int J Solids Struct 24:1287–1298 · doi:10.1016/0020-7683(88)90091-1
[20] Menčík J (1996) Mechanics of components with treated or coated surfaces. Kluwer Academic Publishers, Dordrecht · Zbl 0858.73003
[21] Menčík J, Rauchs G, Bardon J, Riche A (2005) Determination of elastic modulus and hardness of viscoelastic-plastic materials by instrumented indentation under harmonic load. J Mater Res 20:2660–2669 · doi:10.1557/JMR.2005.0338
[22] Haddad YM (1995) Viscoelasticity of engineering materials. Chapman & Hall, London
[23] Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. Springer-Verlag, Berlin · Zbl 0681.73022
[24] Strojny A, Gerberich WW (1988) Experimental analysis of viscoelastic behavior in nanoindentation. In: Moody NR, Gerberich WW, Burnham N, Baker SP (eds) Fundamentals of nanoindentation and nanotribology. Mat. Res. Soc. Symp. Proc. 522, MRS, Warrendale, Pennsylvania, pp 159–164
[25] Oyen ML, Cook RF (2003) Load displacement behavior during sharp indentation of viscous-elastic-plastic materials. J Mater Res 18:139–150 · doi:10.1557/JMR.2003.0020
[26] Chudoba T, Richter F (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198 · doi:10.1016/S0257-8972(01)01340-8
[27] Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17:660–668 · doi:10.1557/JMR.2002.0094
[28] Ngan AHW, Tang B (2002) Viscoelastic effects during unloading in depth-sensing indentation. J Mater Res 17:2604–2610 · doi:10.1557/JMR.2002.0377
[29] Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys D Appl Phys 31: 2395–2405 · doi:10.1088/0022-3727/31/19/006
[30] Bushby AJ, Ferguson VL, Boyde A (2003) Nanoindentation of bone: Comparison of specimen tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19:249–259 · doi:10.1557/jmr.2004.19.1.249
[31] Pichler Ch, Jäger A, Lackner R, Eberhardsteiner J (2005) Identification of material properties from nanoindentation: application to bitumen and cement paste. 22nd Danubia Adria symposium on experimental methods in solid mechanics, Monticelli, 28 Sept – 1 Oct 2005, University of Parma, pp 198–199
[32] Brückner R, Demharter G (1975) Systematische Untersuchungen über die Anwendbarkeit von Penetrationsviskosimetern. Glastech Ber 48:12–18
[33] Cseh G, Chinh NQ, Tasnádi A, Juhász A (1997) Indentation test for the investigation of high-temperature plasticity of materials. J Mater Sci 32:5107–5111 · doi:10.1023/A:1018665300227
[34] Dorčáková F, Jan V, Špaková J, Dusza J (2005) Indentation creep in advanced ceramics research. 2nd Slovak-Czech conference ”local mechanical properties”, 14–15 November, Košice, Slovak Republic. Technical University of Košice, CD-ROM, ISBN 80-8073-405-4
[35] Menčík J, Swain MV (1995) Errors asociated with depth-sensing microindentation tests. J Mater Res 10:1491–1501 · doi:10.1557/JMR.1995.1491
[36] Pešek L, Zubko P, Vadasová Z, Ambriško L (2005) Mechanical properties of reference blocks for instrumented hardness measurement and factors measurement accuracy. 2nd Slovak-Czech conference ”local mechanical properties”, 14–15 November 2005, Košice, Slovak Republic. Technical University of Košice, CD-ROM, ISBN 80-8073-405-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.