Novel transparent boundary conditions for the regularized long wave equation. (English) Zbl 07205476


65-XX Numerical analysis
76-XX Fluid mechanics
Full Text: DOI


[1] Abbaszadeh, M. and Dehghan, M. [2017] “ The two-grid interpolating element free Galerkin (TG-IEFG) method for solving Rosenau-regularized long wave (RRLW) equation with error analysis,” Appl. Anal.97(7), 1129-1153, http://dx.doi.org/10.1080/00036811.2017.1303137. · Zbl 1395.65133
[2] Achouri, T., Khiari, N. and Omrani, K. [2006] “ On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation,” J. Appl. Math. Comp.182, 999-1005. · Zbl 1116.65107
[3] Antoine, X., Arnold, A., Besse, C., Ehrhardt, M. and Schädle, A. [2008] “ A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,” Commun. Comput. Phys.4(4), 729-796. · Zbl 1364.65178
[4] Benjamin, T. B., Bona, J. L., Wen, J. and Mahony, J. [1972] “ Model equations for long waves in nonlinear dispersive systems,” Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci.272(1220), 47-78. · Zbl 0229.35013
[5] Dehghan, M., Abbaszadeh, M. and Mohebbi, A. [2015] “ The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate,” J. Comput. Appl. Math.286, 211-231, http://dx.doi.org/10.1016/j.cam.2015.03.012. · Zbl 1315.65086
[6] Dehghan, M. and Salehi, R. [2011] “ The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas,” Comput. Phys. Commun.182(12), 2540-2549, http://dx.doi.org/10.1016/j.cpc.2011.07.018. · Zbl 1263.76047
[7] Delfim, S. Jr. [2018] “ A simple explicit-implicit time-marching technique for wave propagation analysis,” Int. J. Comput. Methods, 15(1), 1850082-1850109. https://doi.org/10.1142/S0219876218500822
[8] Doss, L. J. T., Kousalya, N. and Sundar, S. [2018] “ A finite pointset method for biharmonic equation based on mixed formulation,” Int. J. Comput. Methods15(1), 1850068-185092. https://doi.org/10.1142/S0219876218500688 · Zbl 1404.65260
[9] Eilbeck, J. C. and McGuire, G. R. [1975] “ Numerical study of the regularized long-wave equation I: Numerical methods,” J. Comput. Phys.19(1), 43-57. · Zbl 0325.65054
[10] Engquist, B. and Majda, A. [1977] “ Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput.31(139), 629-651. · Zbl 0367.65051
[11] Gerasim, V. K. and Sergey, A. M. [2018] “ On the stability of multi-step finite-difference-based lattice boltzmann schemes,” Int. J. Comput. Methods15(3), 1850087-1850106. https://doi.org/10.1142/S0219876218500871 · Zbl 1404.76202
[12] Hereman, W. [2009] “ Shallow water waves and solitary waves,” in Encyclopedia of Complexity and Applied System Science, Vol. 480, ed. Meyers, R. A. (Springer-Verlag, Heidelberg), pp. 8112-8125.
[13] Kumar, D., Singh, J. and Baleanu, D. [2017] “ A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves,” Math. Methods Appl. Sci.40(15), 5642-5653, https://doi.org/10.1002/mma.4414. · Zbl 1388.35212
[14] Kumar, D., Singh, J., Baleanu, D. and Rathore, S. [2018a] “ Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel,” Physica A492, 155-167.
[15] Kumar, D., Singh, J., Baleanu, D. and Rathore, S. [2018b] “ Analysis of fractional model of the Ambartsumian equation,” Eur. Phys. J. Plus133(259), 1-7, https://doi.org/10.1140/epjp/i2018-12018-3.
[16] Kumar, D., Agarwal, R. P. and Singh, J. [2018c] “ A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation,” J. Comput. Appl. Math.339, 405-413. · Zbl 1404.34007
[17] Mekki, A. and Maâtoug, M. A. [2013] “ Numerical simulations of Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equations using finite difference method,” Appl. Math. Comput.219(24), 11214-11222. · Zbl 1304.65193
[18] Peregrine, D. H. [1966] “ Calculations of the development of an undular bore,” J. Fluid Mech.25(2), 321-330.
[19] Poulsen, S. O. and Voorhees, P. W. [2018] “ Smoothed boundary method for diffusion-related partial differential equations in complex geometries,” Int. J. Comput. Methods15(1), 1850014-1850039. https://doi.org/10.1142/S0219876218500147 · Zbl 1404.65149
[20] Renardy, M. [2005] “ A backward uniqueness result for the wave equation with absorbing boundary conditions,” Evol. Equ. Control Theory4(3), 347-353. · Zbl 1337.47111
[21] Shao, X., Xue, G. and Li, C. [2013] “ A conservative weighted finite difference scheme for regularized long wave equation,” Appl. Math. Comput.219(17), 9202-9209. · Zbl 1288.65125
[22] Shokri, A. and Dehghan, M. A. [2010] “ Meshless method using the radial basis functions for numerical solution of the regularized long wave equation,” Numer. Methods Partial Differ. Equ.26(2) 807-825, https://doi.org/10.1002/num.20457. · Zbl 1195.65142
[23] Singh, J., Kumar, D., Baleanu, D. and Rathore, S. [2018] “ An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation,” Appl. Math. Comput.335, 12-24. · Zbl 1427.65324
[24] Zhang, W., Li, H. and Wu, X. [2014] “ Local absorbing boundary conditions for a linearized Korteweg-de-Vries equation,” Phys. Rev.89(5), 053305.
[25] Zheng, C., Wen, X. and Han, H. [2007] “ Numerical solution to a linearized KdV equation on unbounded domain,” Numer. Methods Partial Differ. Eq.24(2), 383-399, https://doi.org/10.1002/num.20267. · Zbl 1140.65070
[26] Zheng, C. [2007] “ A perfectly matched layer approach to the nonlinear Schrödinger wave equations,” J. Comput. Phys.227(1), 537-556. · Zbl 1127.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.