×

Qualitative modeling of dynamical systems employing continuous-time recurrent fuzzy systems. (English) Zbl 1206.93061

Summary: Continuous-Time Recurrent Fuzzy Systems (CTRFS) allow the representation of knowledge-based dynamic processes that can be stated in the form of “if \(\dots \), then \(\dots \)” rules. In this article we show how a CTRFS can not only be modeled by linguistically given knowledge but also by measured data. Furthermore, a unified approach for both structure and parameter identification of continuous-time recurrent fuzzy systems is presented, resulting in a linguistically interpretable model of the considered dynamic process. The capability of the approach is shown by modeling of a biotechnological process.

MSC:

93C42 Fuzzy control/observation systems
93C10 Nonlinear systems in control theory
93A30 Mathematical modelling of systems (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations

Software:

ANFIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man Cybern., 15, 1, 116-132 (1985) · Zbl 0576.93021
[2] Juang, C.-F.; Lin, C., A recurrent self-organizing neural fuzzy inference network, IEEE Trans. Neural Networks, 10, 4, 828-845 (1999)
[3] Theocharis, J., A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation, Fuzzy Sets and Systems, 157, 471-500 (2006)
[4] Zhang, J.; Morris, A., Recurrent neuro-fuzzy networks for nonlinear process modeling, IEEE Trans. Neural Networks, 10, 2, 313-326 (1999)
[5] Lin, C.; Chen, C., Identification and prediction using recurrent compensatory neuro-fuzzy systems, Fuzzy Sets and Systems, 150, 307-330 (2005) · Zbl 1067.68129
[6] Li, C.; Cheng, K.-H., Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling, Fuzzy Sets and Systems, 158, 194-212 (2007) · Zbl 1110.93030
[7] Mastorocostas, P.; Theocharis, J., A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans. Syst. Man Cybern. Part B Cybern., 32, 2, 176-190 (2002)
[8] J. Adamy, Device for early detection of runout in continuous casting, EP Priority Date 03.04.1995, European Patent 0819033B1, 1998, US Patent 5,904,202, 1999.; J. Adamy, Device for early detection of runout in continuous casting, EP Priority Date 03.04.1995, European Patent 0819033B1, 1998, US Patent 5,904,202, 1999.
[9] Adamy, J.; Kempf, R., Regularity and chaos in recurrent fuzzy systems, Fuzzy Sets and Systems, 140, 2, 259-284 (2003) · Zbl 1040.93039
[10] V. Gorrini, H. Bersini, Recurrent fuzzy systems, in: Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Orlando, USA, 1994, pp. 193-198.; V. Gorrini, H. Bersini, Recurrent fuzzy systems, in: Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Orlando, USA, 1994, pp. 193-198.
[11] Kempf, R.; Adamy, J., Equilibria of recurrent fuzzy systems, Fuzzy Sets and Systems, 140, 2, 231-257 (2003) · Zbl 1031.93116
[12] Kempf, R.; Adamy, J., Sequential pattern recognition employing recurrent fuzzy systems, Fuzzy Sets and Systems, 146, 3, 451-472 (2004) · Zbl 1068.68132
[13] Adamy, J.; Flemming, A., Equilibria of continuous-time recurrent fuzzy systems, Fuzzy Sets and Systems, 157, 22, 2913-2933 (2006) · Zbl 1111.93042
[14] Flemming, A.; Adamy, J., Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems, Eng. Appl. Artif. Intell., 21, 1289-1300 (2008)
[15] Nelles, O., Nonlinear System Identification (2002), Springer
[16] Luenberger, D., Linear and Nonlinear Programming (2003), Springer · Zbl 1134.90040
[17] Liu, G.; Yang, J.; Whitborne, J., Multiobjective Optimization and Control (2002), Research Studies Press
[18] Zadeh, L., Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control, 8, 59-60 (1963)
[19] Jang, J., Anfis: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern., 23, 665-685 (1993)
[20] Wang, L.; Mendel, J., Generating fuzzy rules by learning from examples, IEEE Trans. Syst. Man Cybern., 22, 1414-1427 (1992)
[21] Y. Nakoula, S. Galichet, L. Foulloy, Simultaneous learning of rules and linguistic terms, in: Proceedings of the 5th IEEE International Conference on Fuzzy Systems, vol. 3, 1996, pp. 1743-1749.; Y. Nakoula, S. Galichet, L. Foulloy, Simultaneous learning of rules and linguistic terms, in: Proceedings of the 5th IEEE International Conference on Fuzzy Systems, vol. 3, 1996, pp. 1743-1749.
[22] Evsukoff, A.; Blanco, A.; Galichet, S., Structure identification and parameter optimization for non-linear fuzzy modeling, Fuzzy Sets and Systems, 132, 173-188 (2002) · Zbl 1010.93521
[23] Guillaume, S.; Charnomordic, B., Generating an interpretable family of fuzzy partitions from data, IEEE Trans. Fuzzy Systems, 12, 324-335 (2004)
[24] Nauck, D.; Kruse, R., Neuro-fuzzy systems for function approximation, Fuzzy Sets and Systems, 101, 261-271 (1999) · Zbl 0937.93029
[25] Rojas, I.; Pomares, H.; Ortega, J.; Prieto, A., Self-organized fuzzy system generation from training examples, IEEE Trans. Fuzzy Systems, 8, 23-36 (2000)
[26] Cordon, O.; Gomide, F.; Herrera, F.; Hoffmann, K.; Magdalena, L., Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets and Systems, 141, 5-31 (2004) · Zbl 1050.93513
[27] Gomez-Skarmeta, A.; Jimenez, F., Fuzzy modeling with hybrid systems, Fuzzy Sets and Systems, 104, 199-208 (1999)
[28] Nürnberger, A.; Kruse, R., A neuro-fuzzy approach to optimize hierarchical recurrent fuzzy systems, Fuzzy Optim. Decision Making, 1, 2, 221-248 (2002) · Zbl 1092.68648
[29] Juang, C.-F.; Chung, I.; Hsu, C., Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization, Fuzzy Sets and Systems, 158, 1979-1996 (2007) · Zbl 1121.93036
[30] Guely, F.; La, R.; Siarry, P., Fuzzy rule base learning through simulated annealing, Fuzzy Sets and Systems, 105, 353-363 (1999) · Zbl 0935.68089
[31] Babuška, R.; Verbruggen, H., An overview of fuzzy modeling for control, Control Eng. Pract., 4, 11, 1593-1606 (1996)
[32] Sugeno, M.; Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Systems, 1, 7-31 (1993)
[33] Chen, J.-Q.; Xi, Y.-G.; Zhang, Z.-J., A clustering algorithm for fuzzy model identification, Fuzzy Sets and Systems, 98, 319-329 (1998)
[34] Delgado, M.; Gomez-Skarmeta, A. F.; Martin, F., A methodology to model fuzzy systems using fuzzy clustering in a rapid-prototyping approach, Fuzzy Sets and Systems, 97, 287-301 (1998)
[35] Lughofer, E., Flexfis: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models, IEEE Trans. Fuzzy Systems, 16, 1393-1410 (2008)
[36] Bortolet, P.; Merlet, E.; Boverie, S., Fuzzy modeling and control of an engine air inlet with exhaust gas recirculation, Control Eng. Pract., 7, 1269-1277 (1999)
[37] Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716-723 (1974) · Zbl 0314.62039
[38] Golub, G.; Van Loan, C., Matrix Computations (1996), Johns Hopkins University Press · Zbl 0865.65009
[39] Mirkin, B., Clustering for Data Mining: A Data Recovery Approach (2005), Chapman & Hall/CRC · Zbl 1083.68099
[40] Agrawal, P.; Lee, C.; Lim, H.; Ramkrishna, D., Theoretical investigations of dynamic behaviour of isothermal stirred tank biological reactors, Chem. Eng. Sci., 37, 453-462 (1982)
[41] Bailey, J.; Ollis, D., Biochemical Engineering Fundamentals, vol. 2 (1986), McGraw-Hill
[42] Moser, A., Bioprocess Technology (1988), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.