×

Global dynamics of a state-dependent feedback control system. (English) Zbl 1422.34093

Summary: The main purpose is to develop novel analytical techniques and provide a comprehensive qualitative analysis of global dynamics for a state-dependent feedback control system arising from biological applications including integrated pest management. The model considered consists of a planar system of differential equations with state-dependent impulsive control. We characterize the impulsive and phase sets, using the phase portraits of the planar system and the Lambert W function to define the Poincaré map for impulsive point series defined in the phase set. The existence, local and global stability of an order-1 limit cycle and obtain sharp sufficient conditions for the global stability of the boundary order-1 limit cycle have been provided. We further examine the flip bifurcation related to the existence of an order-2 limit cycle. We show that the existence of an order-2 limit cycle implies the existence of an order-1 limit cycle. We derive sufficient conditions under which any trajectory initiating from a phase set will be free from impulsive effects after finite state-dependent feedback control actions, and we also prove that order-\(k\) (\(k\geq3\)) limit cycles do not exist, providing a solution to an open problem in the integrated pest management community. We then investigate multiple attractors and their basins of attraction, as well as the interior structure of a horseshoe-like attractor. We also discuss implications of the global dynamics for integrated pest management strategy. The analytical techniques and qualitative methods developed in the present paper could be widely used in many fields concerning state-dependent feedback control.

MSC:

34A37 Ordinary differential equations with impulses
34C23 Bifurcation theory for ordinary differential equations
92B05 General biology and biomathematics
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tang, SY, Cheke, RA: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257-292 (2005) · Zbl 1080.92067
[2] Tang, SY, Chen, LS: Modelling and analysis of integrated pest management strategy. Discrete Contin. Dyn. Syst., Ser. B 4, 759-768 (2004) · Zbl 1114.92074
[3] Tang, SY, Xiao, YN, Cheke, RA: Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak. Theor. Popul. Biol. 73, 181-197 (2008) · Zbl 1208.92093
[4] Tang, SY, Xiao, YN, Chen, LS, Cheke, RA: Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67, 115-135 (2005) · Zbl 1334.91058
[5] Liang, JH, Tang, SY, Nieto, JJ, Cheke, RA: Analytical methods for detecting pesticide switches with evolution of pesticide resistance. Math. Biosci. 245, 249-257 (2013) · Zbl 1309.92080
[6] Nie, LF, Teng, ZD, Hu, L: The dynamics of a chemostat model with state dependent impulsive effects. Int. J. Bifurc. Chaos 21, 1311-1322 (2011) · Zbl 1248.34070
[7] Tang, SY, Cheke, RA: Models for integrated pest control and their biological implications. Math. Biosci. 215, 115-125 (2008) · Zbl 1156.92046
[8] Tang, SY, Liang, JH, Tan, YS, Cheke, RA: Threshold conditions for interated pest management models with pesticides that have residual effects. J. Math. Biol. 66, 1-35 (2013) · Zbl 1402.92369
[9] Tang, SY, Tang, GY, Cheke, RA: Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases. J. Theor. Biol. 264, 623-638 (2010) · Zbl 1406.92694
[10] Wei, CJ, Zhang, SW, Chen, LS: Impulsive state feedback control of cheese whey fermentation for single-cell protein production. J. Appl. Math. 2013, Article ID 354095 (2013) · Zbl 1397.92237
[11] Lou, J, Lou, YJ, Wu, JH: Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol. 65, 623-652 (2012) · Zbl 1278.34053
[12] Maggioloa, F, Airoldia, M, Callegaro, A, et al.: CD4 cell-guided scheduled treatment interruptions in HIV-infected patients with sustained immunologic response to HAART. AIDS 23, 799-807 (2009)
[13] Miron, RE, Smith, RJ: Modelling imperfect adherence to HIV induction therapy. BMC Infect. Dis. 10, 6 (2010)
[14] Smith RJ: Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges? Proc. R. Soc. Lond. B, Biol. Sci. 273, 617-624 (2006)
[15] Smith RJ, Schwartz, EJ: Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: how often should you vaccinate and how strong should the vaccine be? Math. Biosci. 212, 180-187 (2008) · Zbl 1138.92020
[16] Smith RJ, Wahl, LM: Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 66, 1259-1283 (2004) · Zbl 1334.92239
[17] Yang, YP, Xiao, YN: Threshold dynamics for compartmental epidemic models with impulses. Nonlinear Anal., Real World Appl. 13, 224-234 (2012) · Zbl 1238.34023
[18] Cappuccio, A, Castiglione, F, Piccoli, B: Determination of the optimal therapeutic protocols in cancer immunotherapy. Math. Biosci. 209, 1-13 (2007) · Zbl 1137.92018
[19] Huang, MZ, Li, JX, Song, XY, Guo, HJ: Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J. Appl. Math. 72, 1524-1548 (2012) · Zbl 1325.92045
[20] Panetta, JC, Adam, J: A mathematical model of cycle-specific chemotherapy. Math. Comput. Model. 22, 67-82 (1995) · Zbl 0829.92011
[21] Tang, SY, Xiao, YN: One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach. J. Pharmacokinet. Biopharm. 34, 807-827 (2007)
[22] Tolic, IM, Mosekilde, E, Sturis, J: Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J. Theor. Biol. 207, 361-375 (2000)
[23] Agur, Z, Cojocaru, L, Mazor, G, Anderson, RM, Danon, YL: Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90, 11698-11702 (1993)
[24] Choisy, M, Guégan, JF, Rohani, P: Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects. Physica D 223, 26-35 (2006) · Zbl 1110.34031
[25] d’Onofrio, A: Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci. 179, 57-72 (2002) · Zbl 0991.92025
[26] Lu, ZH, Chi, XB, Chen, LS: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36, 1039-1057 (2002) · Zbl 1023.92026
[27] Fishman, S, Marcus, R: A model for spread of plant disease with periodic removals. J. Math. Biol. 21, 149-158 (1984) · Zbl 0548.92015
[28] Shulgin, B, Stone, L, Agur, Z: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 1123-1148 (1998) · Zbl 0941.92026
[29] Stone, L, Shulgin, B, Agur, Z: Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Model. 31, 207-215 (2000) · Zbl 1043.92527
[30] Tang, SY, Xiao, YN, Cheke, RA: Dynamical analysis of plant disease models with cultural control strategies and economic thresholds. Math. Comput. Simul. 80, 894-921 (2010) · Zbl 1183.92060
[31] Tang, SY, Xiao, YN, Clancy, D: New modelling approach concerning integrated disease control and cost-effectivity. Nonlinear Anal., Theory Methods Appl. 63, 439-471 (2005) · Zbl 1078.92059
[32] Terry, AJ: Pulse vaccination strategies in a metapopulation SIR model. Math. Biosci. Eng. 7, 455-477 (2010) · Zbl 1260.92078
[33] Chacron, MJ, Pakdaman, K, Longtin, A: Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate and fire model with threshold fatigue. Neural Comput. 15, 253-278 (2003) · Zbl 1020.92007
[34] Ermentrout, GB, Kopell, N: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195-217 (1991) · Zbl 0718.92004
[35] FitzHugh, R: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445-466 (1961)
[36] Goel, P, Ermentrout, B: Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D 163, 191-216 (2002) · Zbl 1008.70017
[37] Hindmarsh, JL, Rose, RM: A model of the nerve impulse using two first-order differential equations. Nature 296, 162-164 (1982)
[38] Izhikevich, EM: Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Trans. Neural Netw. 10, 499-507 (1999)
[39] Mirollo, RE, Strogatz, SH: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645-1662 (1990) · Zbl 0712.92006
[40] Nagumo, J, Arimoto, S, Yoshizawa, S: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061-2070 (1962)
[41] d’Onofrio, A: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18, 729-732 (2005) · Zbl 1064.92041
[42] Gao, SJ, Chen, LS, Teng, ZD: Impulsive vaccination of an SEIRS model with time delay and varying total population size. Bull. Math. Biol. 69, 731-745 (2007) · Zbl 1139.92314
[43] Sun, KB, Tian, Y, Chen, LS, Kasperski, A: Nonlinear modelling of a synchronized chemostat with impulsive state feedback control. Math. Comput. Model. 52, 227-240 (2010) · Zbl 1201.92065
[44] Lenteren, JC, Integrated pest management in protected crops (1995), London
[45] Van Lenteren, JC, Woets, J: Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33, 239-250 (1988)
[46] Jarad, F, Abdeljawad, T, Baleanu, D: Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. Comput. 218, 9234-9240 (2012) · Zbl 1244.49028
[47] Mobayen, S: Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback. Nonlinear Dyn. 76, 827-838 (2014) · Zbl 1319.93032
[48] Mobayen, S: An LMI-based robust tracker for uncertain linear systems with multiple time-varying delays using optimal composite nonlinear feedback technique. Nonlinear Dyn. 80, 917-927 (2015) · Zbl 1345.93061
[49] Doha, EH, Bhrawy, AH, Baleanu, D, et al.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. 2015, Article ID 15 (2015). doi:10.1186/s13662-014-0344-z · Zbl 1423.49018 · doi:10.1186/s13662-014-0344-z
[50] Bainov, DD, Simeonov, PS: Systems with Impulsive Effect: Stability, Theory and Applications. Wiley, New York (1989) · Zbl 0683.34032
[51] Benchohra, M, Henderson, J, Ntouyas, S: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006) · Zbl 1130.34003
[52] Kaul, SK: On impulsive semidynamical systems. J. Math. Anal. Appl. 150, 120-128 (1990) · Zbl 0711.34015
[53] Kaul, SK, On impulsive semidynamical systems III: Lyapunov stability, No. 1, 335-345 (1992), River Edge · Zbl 0832.34038
[54] Kaul, SK: Stability and asymptotic stability in impulsive semidynamical systems. J. Appl. Math. Stoch. Anal. 7, 509-523 (1994) · Zbl 0857.54039
[55] Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. Series in Modern Mathematics. World Scientific, Singapore (1989) · Zbl 0719.34002
[56] Melin, J: Does distribution theory contain means for extending Poincaré-Bendixson theory. J. Math. Anal. Appl. 303, 81-89 (2004) · Zbl 1073.34007
[57] Qi, JG, Fu, XL: Existence of limit cycles of impulsive differential equations with impulses as variable times. Nonlinear Anal., Theory Methods Appl. 44, 345-353 (2011) · Zbl 0993.34043
[58] Zeng, GZ, Chen, LS, Sun, LH: Existence of periodic solution of order one of planar impulsive autonomous system. J. Comput. Appl. Math. 186, 466-481 (2006) · Zbl 1088.34040
[59] Bonotto, EM: Flows of characteristic 0+ in impulsive semidynamical systems. J. Math. Anal. Appl. 332, 81-96 (2007) · Zbl 1112.37014
[60] Bonotto, EM, Federson, M: Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. J. Differ. Equ. 244, 2334-2349 (2008) · Zbl 1143.37014
[61] Bonotto, EM, Federson, M: Topological conjugation and asymptotic stability in impulsive semidynamical systems. J. Math. Anal. Appl. 326, 869-881 (2007) · Zbl 1162.37008
[62] Bonotto, EM, Grulha, NG Jr: Lyapunov stability of closed sets in impulsive semidynamical systems. Electron. J. Differ. Equ. 2010, 78 (2010) · Zbl 1221.37026
[63] Chellaboina, VS, Bhat, SP, Haddad, WM: An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlinear Anal., Theory Methods Appl. 53, 527-550 (2003) · Zbl 1082.37018
[64] Matveev, AS, Savkin, AV: Qualitative Theory of Hybrid Dynamical Systems. Birkhäuser, Cambridge (2000) · Zbl 1052.93004
[65] Bonotto, EM: LaSalle’s theorems in impulsive semidynamical systems. Nonlinear Anal., Theory Methods Appl. 71, 2291-2297 (2009) · Zbl 1183.37024
[66] Tian, Y, Sun, KB, Kasperski, A, Chen, LS: Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding. Discrete Dyn. Nat. Soc. 2010, Article ID 640594 (2010) · Zbl 1195.92031
[67] Meng, XZ, Li, ZQ: The dynamics of plant disease models with continuous and impulsive cultural control strategies. J. Theor. Biol. 266, 29-40 (2010) · Zbl 1407.92077
[68] Chen, LS: Pest control and geometric theory of semi-dynamical systems. J. Beihua Univ. Nat. Sci. 12, 1-9 (2011)
[69] Jiang, GR, Lu, QS, Qian, LN: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Solitons Fractals 31, 448-461 (2007) · Zbl 1203.34071
[70] Li, YF, Xie, DL, Cui, A: Complex dynamics of a predator-prey model with impulsive state feedback control. Appl. Math. Comput. 230, 395-405 (2014) · Zbl 1410.37076
[71] Nie, LF, Peng, JG, Teng, ZD, Hu, L: Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state-dependent impulsive effects. J. Comput. Appl. Math. 224, 544-555 (2009) · Zbl 1162.34007
[72] Tian, Y, Sun, KB, Chen, LS: Modelling and qualitative analysis of a predator-prey system with state-dependent impulsive effects. Math. Comput. Simul. 82, 318-331 (2011) · Zbl 1236.92072
[73] Wei, CJ, Chen, LS: Periodic solution of prey-predator model with Beddington-DeAngelis functional response and impulsive state feedback control. J. Appl. Math. 2012, Article ID 607105 (2012) · Zbl 1263.92053
[74] Pedigo, LP, Higley, LG: A new perspective of the economic injury level concept and environmental quality. Am. Entomol. 38, 12-20 (1992)
[75] Bunimovich-Mendrazitsky, S, Byrne, H, Stone, L: Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull. Math. Biol. 70, 2055-2076 (2008) · Zbl 1147.92013
[76] Bunimovich-Mendrazitsky, S, Claude Gluckman, J, Chaskalovic, J: A mathematical model of combined bacillus Calmette-Guerin (BCG) and interleukin (IL)-2 immunotherapy of superficial bladder cancer. J. Theor. Biol. 277, 27-40 (2011) · Zbl 1397.92315
[77] Panetta, JC: A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Bull. Math. Biol. 58, 425-447 (1996) · Zbl 0859.92014
[78] Wei, HC: A numerical study of a mathematical model of pulsed immunotherapy for superficial bladder cancer. Jpn. J. Ind. Appl. Math. 30, 441-452 (2013) · Zbl 1329.92061
[79] Wei, HC, Hwang, SF, Lin, JT, Chen, TJ: The role of initial tumor biomass size in a mathematical model of periodically pulsed chemotherapy. Comput. Math. Appl. 61, 3117-3127 (2011) · Zbl 1222.92048
[80] Wei, HC, Lin, JT: Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction. Int. J. Bifurc. Chaos 23, 1-13 (2013) · Zbl 1270.34143
[81] Staccato Study Group, Swiss HIV Cohort Study: CD4 guided scheduled treatment interruption compared to continuous therapy: results of the staccato trial. Lancet 368, 459-465 (2006)
[82] El-Sadr, WM, Lundgren, JD, Neaton, JD: CD4+ count-guided interruption of antiretroviral treatment. The strategies for management of antiretroviral therapy (SMART) study group. N. Engl. J. Med. 355, 2283-2296 (2006)
[83] Mailleret, L, Lemesle, V: A note on semi-discrete modelling in the life sciences. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367, 4779-4799 (2009) · Zbl 1192.37119
[84] Tang, SY, Xiao, YN, Wang, N, Wu, HL: Piecewise HIV virus dynamic model with CD4+T cell count guided therapy: I. J. Theor. Biol. 308, 123-134 (2012) · Zbl 1411.92180
[85] Fleming, GF, Meropol, NJ, Rosner, GL, et al.: A phase I trial of escalating doses of trastuzumab combined with daily subcutaneous interleukin 2: report of cancer and leukemia group B 9661. Clin. Cancer Res. 8, 3718-3727 (2002)
[86] INSIGHT-ESPRIT Study Group, SILCAAT Scientific Committee: Interleukin-2 therapy in patients with HIV infection. N. Engl. J. Med. 361, 1549-1559 (2009)
[87] Miron, RE, Smith, RJ: Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 76, 59-97 (2014) · Zbl 1283.92050
[88] Pau, AK, Tavel, JA: Therapeutic use of interleukin-2 in HIV-infected patients. Curr. Opin. Pharmacol. 2, 433-439 (2002)
[89] Choh, Y, Ignacio, M, Sabelis, MW, Janssen, A: Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Sci. Rep. 2, 1-6 (2012)
[90] Ives, AR, Dobson, AP: Antipredator behaviour and the population dynamics of simple predator-prey systems. Am. Nat. 130, 431-447 (1987)
[91] Janssen, A, Faaraji, F, van der Hammen, T, Magalhães, S, Sabelis, MW: Interspecific infanticide deters predators. Ecol. Lett. 5, 490-494 (2002)
[92] Saito, Y: Prey kills predator: counter attack success of a spider mite against its specific phytoseiid predator. Exp. Appl. Acarol. 2, 47-62 (1986)
[93] Ramao-Jiliberto, R, Frodden, E, Aránguiz-Acuña, A: Pre-encounter versus post-encounter inducible defense in predator-prey systems. Ecol. Model. 200, 99-108 (2007)
[94] Komarova, NL, Barnes, E, Klenerman, P, Wodarz, D: Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc. Natl. Acad. Sci. USA 100, 1855-1860 (2003)
[95] Kuznetsov, VA, Makalkin, IA, Taylor, MA, Perelson, AS: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295-321 (1994) · Zbl 0789.92019
[96] Mukhopadhyay, B, Bhattacharyya, R: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 198, 163-173 (2006)
[97] Pei, YZ, Lv, YF, Li, CG: Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Appl. Math. Model. 36, 1752-1765 (2012) · Zbl 1243.34072
[98] Corless, RM, Gonnet, GH, Hare, DEG, Jeffrey, DJ, Knuth, DE: On the Lambert W function. Adv. Comput. Math. 5, 329-359 (1996) · Zbl 0863.65008
[99] de Melo, W, van Strien, S: One-Dimensional Dynamics. Springer, New York (1993) · Zbl 0791.58003
[100] de Melo, W, van Strien, S: One-dimensional dynamics: the Schwarzian derivative and beyond. Bull., New Ser., Am. Math. Soc. 18, 159-162 (1988) · Zbl 0651.58019
[101] Guckenheimer, J, Holmes, P: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983) · Zbl 0515.34001
[102] Andronov, AA, Leontovich, EA, Gordan, LL, Maier, AG: Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York (1973) · Zbl 0282.34022
[103] Ciesielski, K: On semicontinuity in impulsive dynamical systems. Bull. Pol. Acad. Sci., Math. 52, 71-80 (2004) · Zbl 1098.37016
[104] Ciesielski, K: On stability in impulsive dynamical systems. Bull. Pol. Acad. Sci., Math. 52, 81-91 (2004) · Zbl 1098.37017
[105] Ciesielski, K: On time reparametrizations and isomorphisms of impulsive dynamical systems. Ann. Pol. Math. 84, 1-25 (2004) · Zbl 1098.37015
[106] Zhang, ZF, Ding, TR, Huang, WZ, Dong, ZX: Qualitative Theory of Differential Equations. Translations of Mathematical Monographs, vol. 101. Am. Math. Soc., Providence (1992) · Zbl 0779.34001
[107] Simeonov, PS, Bainov, DD: Orbital stability of the periodic solutions of autonomous systems with impulse effect. Int. J. Syst. Sci. 19, 2561-2585 (1988) · Zbl 0669.34044
[108] Iooss, G: Bifurcations of Maps and Applications. North-Holland, New York (1979) · Zbl 0408.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.