On the search of more stable second-order lattice-Boltzmann schemes in confined flows. (English) Zbl 1349.76684

J. Comput. Phys. 294, 605-618 (2015); corrigendum ibid. 311, 374 (2016).
Summary: The von Neumann linear analysis, restricted by a heuristic selection of wave-number vectors was applied to the search of explicit lattice Boltzmann schemes which exhibit more stability than existing methods. The relative stability of the family members of quasi-incompressible collision kernels, for the Navier-Stokes equations in confined flows, was analyzed. The linear stability analysis was simplified by assuming a uniform velocity level over the whole domain, where only the wave numbers of the first harmonic normal to the flow direction were permitted. A singular equilibrium function that maximizes the critical velocity level was identified, which was afterwards tested in particular cases of confined flows of interest, validating the resulting procedure.


76M28 Particle methods and lattice-gas methods
Full Text: DOI


[1] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 145-197, (1992)
[2] Qian, Y. H.; D’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479, (1992) · Zbl 1116.76419
[3] Qian, Y. H.; Succi, S.; Orszag, S. A., Recent advances in lattice Boltzmann computing, (Stauffer, D., Annual Reviews of Computational Physics III, (1995), World Sci. Pub. Co. Pte. Ltd. Singapore), 195-242
[4] Hirabayashi, M.; Ohta, M.; Baráth, K.; Rüfenacht, D. A.; Chopard, B., Numerical analysis of the flow pattern in stented aneurysms and its relation to velocity reduction and stent efficiency, Math. Comput. Simul., 72, 128-133, (2006) · Zbl 1102.76081
[5] Artoli, A. M.; Hoekstra, A. G.; Sloot, P. M.A., Optimizing lattice Boltzmann simulations for unsteady flows, Comput. Fluids, 35, 227-240, (2006) · Zbl 1099.76051
[6] Pelliccioni, O.; Cerrolaza, M.; Herrera, M., Lattice Boltzmann dynamic simulation of a mechanical heart valve device, Math. Comput. Simul., 75, 1-14, (2007) · Zbl 1111.92014
[7] He, X.; Duckwiler, G.; Valentino, D. J., Lattice Boltzmann simulation of cerebral artery hemodynamics, Comput. Fluids, 38, 789-796, (2009) · Zbl 1242.76271
[8] Golbert, D. R.; Blanco, P. J.; Clausse, A.; Feijóo, R. A., Tuning a lattice-Boltzmann model for applications in computational hemodynamics, Med. Eng. Phys., 34, 339-349, (2012)
[9] Hyakutake, T.; Matsumoto, T.; Yanase, S., Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations, Math. Comput. Simul., 72, 134-140, (2007) · Zbl 1097.92018
[10] Dupin, M. M.; Halliday, I.; Care, C. M.; Munn, L. L., Lattice Boltzmann modeling of blood cell dynamics, Int. J. Comput. Fluid Dyn., 22, 481-492, (2008) · Zbl 1184.76791
[11] Liu, Y., A lattice Boltzmann model for blood flows, Appl. Math. Model., 36, 2890-2899, (2012) · Zbl 1252.76068
[12] Rothman, D. H.; Zaleski, S., Lattice-gas cellular automata: simple models of complex hydrodynamics, (1997), Cambridge University Press Cambridge · Zbl 0931.76004
[13] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. Comput. Phys., 131, 241-246, (1997) · Zbl 0877.76062
[14] Sterling, J. D.; Chen, S., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123, 196-206, (1996) · Zbl 0840.76078
[15] Worthing, R. A.; Mozer, J.; Seeley, G., Stability of lattice Boltzmann methods in hydrodynamic regimes, Phys. Rev. E, 56, 2243-2253, (1997)
[16] Tosi, F.; Ubertini, S.; Succi, S.; Chen, H.; Karlin, I. V., Numerical stability of entropic versus positivity-enforcing lattice-Boltzmann schemes, Math. Comput. Simul., 72, 227-231, (2006) · Zbl 1116.76068
[17] Brownlee, R. A.; Gorban, A. N.; Levesle, J., Stability and stabilization of the lattice-Boltzmann method, Phys. Rev. E, 75, 036711, (2007)
[18] Servan-Camas, B.; Tsai, F. T.C., Non-negativity and stability analyses of lattice-Boltzmann method for advection-diffusion equation, J. Comput. Phys., 228, 236-256, (2009) · Zbl 1245.76119
[19] Rheinländer, M., On the stability structure for lattice Boltzmann schemes, Comput. Math. Appl., 59, 2150-2167, (2010) · Zbl 1193.76114
[20] Ricot, D.; Marié, S.; Sagaut, P.; Bailly, C., Lattice Boltzmann method with selective viscosity filter, J. Comput. Phys., 228, 4478-4490, (2009) · Zbl 1395.76073
[21] El-Amin, M. F.; Sun, S.; Salama, A., On the stability of the finite difference based lattice Boltzmann method, Proc. Comput. Sci., 18, 2101-2108, (2013)
[22] Siebert, D. N.; Hegele, L. A.; Philippi, P. C., Lattice Boltzmann equation linear stability analysis: thermal and athermal models, Phys. Rev. E, 77, 026707, (2008)
[23] Montessori, A.; Falcucci, G.; Prestininzi, P.; La Rocca, M.; Succi, S., Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations, Phys. Rev. E, 89, 053317, (2014)
[24] Zhang, L.; Zeng, Z.; Xie, H.; Zhang, Y.; Lu, Y.; Yoshikawa, A.; Mizuseki, H.; Kawazoe, Y., A comparative study of lattice Boltzmann models for incompressible flow, Comput. Math. Appl., 68, 1446-1466, (2014) · Zbl 1367.76047
[25] Shan, X.; Yuan, X. F.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413-441, (2006) · Zbl 1097.76061
[26] Philippi, P. C.; Hegele, L. A.; dos Santos, L. O.; Surmas, R., From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models, Phys. Rev. E, 73, 056702, (2006)
[27] Siebert, D. N.; Hegele, L. A.; Surmas, R.; dos Santos, L. O.; Philippi, P. C., Thermal lattice Boltzmann in two dimensions, Int. J. Mod. Phys. C, 18, 546-555, (2007) · Zbl 1144.82347
[28] Shan, X., General solution of lattices for Cartesian lattice Bhatnagar-Gross-Krook models, Phys. Rev. E, 81, 036702, (2010)
[29] Mattila, K. K.; Hegele, L. A.; Philippi, P. C., High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils, Sci. World J., 2014, 142907, (2014)
[30] Ansari, V.; Goharrizi, A. S.; Jafari, S.; Abolpour, B., Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice Boltzmann method, Comput. Fluids, 108, 170-178, (2015) · Zbl 1390.76696
[31] Bogner, S.; Mohanty, S.; Rüde, U., Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, Int. J. Multiph. Flow, 68, 71-79, (2015)
[32] Fakhari, A.; Lee, T., Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM, Comput. Fluids, 107, 205-213, (2015) · Zbl 1390.76710
[33] Gong, S.; Cheng, P., Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method, Int. J. Heat Mass Transf., 80, 206-216, (2015)
[34] Hu, Y.; Li, D.; Shu, S.; Niu, X., Study of multiple steady solutions for the 2D natural convection in a concentric horizontal annulus with a constant heat flux wall using immersed boundary-lattice Boltzmann method, Int. J. Heat Mass Transf., 81, 591-601, (2015)
[35] Karimipour, A.; Nezhad, A. H.; D’Orazio, A.; Esfe, M. H.; Safaei, M. R.; Shirani, E., Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, Eur. J. Mech. B, 49, 89-99, (2015) · Zbl 06932543
[36] Sheikholeslamia, M.; Gorji-Bandpy, M.; Vajravelu, K., Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of al_{2}O_{3}-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder, Int. J. Heat Mass Transf., 80, 16-25, (2015)
[37] Swain, P. P.A.; Karapetsas, G.; Matar, O. K.; Sahu, K. C., Numerical simulation of pressure-driven displacement of a viscoplastic material by a Newtonian fluid using the lattice Boltzmann method, Eur. J. Mech. B, 49, 197-207, (2015) · Zbl 1408.76017
[38] Tong, Z.-X.; He, Y.-L., A unified coupling scheme between lattice Boltzmann method and finite volume method for unsteady fluid flow and heat transfer, Int. J. Heat Mass Transf., 80, 812-824, (2015)
[39] Hegele, L. A.; Mattila, K. K.; Philippi, P. C., Rectangular lattice-Boltzmann schemes with BGK-collision operator, J. Sci. Comput., 56, 230-242, (2013) · Zbl 1426.76598
[40] Mattila, K. K.; Siebert, D. N.; Hegele, L. A.; Philippi, P. C., High-order lattice-Boltzmann equations and stencils for multiphase models, Int. J. Mod. Phys. C, 24, 1340006, (2013)
[41] Philippi, P. C.; Hegele, L. A.; Surmas, R.; Siebert, D. N.; dos Santos, L. O.E., From the Boltzmann to the lattice-Boltzmann equation: beyond BGK collision models, Int. J. Mod. Phys. C, 18, 556-565, (2007) · Zbl 1391.76682
[42] Latt, J.; Chopard, B., Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., 72, 165-168, (2006) · Zbl 1102.76056
[43] Zhang, R.; Shan, X.; Chen, H., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation, Phys. Rev. E, 74, 046703, (2006)
[44] Chen, H.; Zhang, R.; Staroselsky, I.; Jhon, M., Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows, Phys. A, Stat. Mech. Appl., 362, 125-131, (2006)
[45] He, X.; Luo, L. S., Lattice-Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys., 88, 927-944, (1997) · Zbl 0939.82042
[46] Yeomans, J. M., Mesoscale simulations: lattice Boltzmann and particle algorithms, Physica A, 369, 159-184, (2006)
[47] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14, 2007-2010, (2002) · Zbl 1185.76156
[48] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591-1598, (2002) · Zbl 1185.76873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.