High-order upwind compact finite-difference lattice Boltzmann method for viscous incompressible flows. (English) Zbl 1451.76086

Summary: In this work, a high-order upwind compact finite-difference lattice Boltzmann method (UCDLBM) is developed to efficiently solve viscous incompressible flow problems. A fifth-order upwind compact difference scheme is adopted to discretize the spatial derivatives of the lattice Boltzmann equation, and the third-order total-variation-diminishing Runge-Kutta scheme is utilized for the discretization of the temporal term. Compared to the existing central compact finite-difference lattice Boltzmann method (CFDLBM), the present UCDLBM can prevent non-physical oscillations without filtering due to the natural dissipative property of upwind schemes. Three benchmark problems involving the Taylor-Green vortex problem, the doubly periodic shear layer flow problem and the lid driven square cavity flow problem are numerically solved to demonstrate the accuracy and efficiency of the present method. Numerical results computed are in good agreement with the analytical solution or other available numerical results. And, the present UCDLBM is less time-consuming than the CFDLBM without degenerating the order of accuracy of the numerical solutions.


76M20 Finite difference methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI


[1] Wu, J.; Shu, C., A solution-adaptive Lattice Boltzmann method for two-dimensional incompressible viscous flows, J. Comput. Phys., 230, 2246-2269 (2011) · Zbl 1391.76643
[2] Zhang, L.; Zeng, Z.; Xie, H.; Zhang, Y.; Lu, Y.; Yoshiakwa, A.; Mizuseki, H.; Kawazoe, Y., A comparative study of Lattice Boltzmann models for incompressible flow, Comput. Math. Appl., 68, 1446-1466 (2014) · Zbl 1367.76047
[3] Shi, W.; Shyy, W.; Mei, R., Finite-difference-based Lattice Boltzmann method for inviscid compressible flows, Numer. Heat Transf. A, 40, 1-21 (2001)
[4] Sofonea, V.; Lamura, A.; Gonnella, G.; Cristea, A., Finite-difference Lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E, 70, Article 046702 pp. (2004)
[5] Busuioc, S.; Ambruş, V. E.; Biciuşca̧, T.; Sofonea, V., Two-dimensional off-Lattice Boltzmann model for van der waals fluids with variable temperature, Comput. Math. Appl., 79, 111-140 (2020)
[6] Guo, Z.; Zhao, T. S., Lattice Boltzmann Model for incompressible flows through porous media, Phys. Rev. E, 66, Article 036304 pp. (2002)
[7] Zhao, C. Y.; Dai, L. N.; Tang, G. H.; Qu, Z. G.; Li, Z. Y., Numerical study of natural convection in porous media (metals) using Lattice Boltzmann method (LBM), Int. J. Heat Fluid Flow, 31, 925-934 (2010)
[8] Wu, F.; Shi, W.; Liu, F., A Lattice Boltzmann model for the Fokker-Planck equation, Commun. Nonlinear Sci. Numer. Simul., 17, 276-2790 (2012) · Zbl 1252.35265
[9] He, X.; Luo, L. S., Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation, Phys. Rev. E, 56, 6811-6817 (1997)
[10] Sofonea, V.; Sekerka, R. F., Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow, J. Comput. Phys., 207, 639-659 (2005) · Zbl 1213.76150
[11] Wang, H.; Shi, B.; Liang, H.; Chai, Z., Finite-difference Lattice Boltzmann model for nonlinear convection-diffusion equations, Appl. Math. Comput., 309, 334-349 (2017) · Zbl 1411.76146
[12] Krivovichev, G. V.; Mikheev, S. A., On the stability of multi-step finite-difference-based Lattice Boltzmann schemes, Int. J. Comput. Methods, 16, Article 185008 pp. (2019) · Zbl 1404.76202
[13] Chen, H., Volumetric formulation of the Lattice Boltzmann method for fluid dynamics: Basic concept, Phys. Rev. E, 58, 3955-3963 (1998)
[14] Xi, H.; Peng, G.; Chou, S. H., Finite-volume Lattice Boltzmann method, Phys. Rev. E, 59, 6202-6205 (1999)
[15] Stiebler, M.; Tölke, J.; Krafczyk, M., An upwind discretization scheme for the finite volume Lattice Boltzmann method, Comput. Fluids, 35, 814-819 (2006) · Zbl 1177.76329
[16] Lee, T.; Lin, C.-L., A characteristic Galerkin method for discrete Boltzmann equation, J. Comput. Phys., 171, 336-356 (2001) · Zbl 1017.76043
[17] Lee, T.; Lin, C.-L., An Eulerian description of the streaming process in the Lattice Boltzmann equation, J. Comput. Phys., 185, 445-471 (2003) · Zbl 1047.76106
[18] Li, W., High order spectral difference Lattice Boltzmann method for incompressible hydrodynamics, J. Comput. Phys., 345, 618-636 (2017) · Zbl 1378.76095
[19] Reider, M. B.; Sterling, J. D., Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations, Comput Fluids, 24, 459-467 (1995) · Zbl 0845.76086
[20] Cao, N.; Chen, S.; Jin, S.; Martínez, D., Physical symmetry and lattice symmetry in the Lattice Boltzmann method, Phys. Rev. E, 55, R21-R24 (1997)
[21] Mei, R.; Shyy, W., On the finite difference-based Lattice Boltzmann method in curvilinear coordinates, J. Comput. Phys., 143, 426-448 (1998) · Zbl 0934.76074
[22] Guo, Z.; Zhao, T. S., Explicit finite-difference Lattice Boltzmann method for curvilinear coordinates, Phys. Rev. E, 67, Article 066709 pp. (2003)
[23] El-Amin, M. F.; Sun, S.; Salama, A., On the stability of the finite difference based Lattice Boltzmann method, Procedia Comput. Sci., 18, 2101-2108 (2013)
[24] Y. Wang Y. L. He, M. F.; Zhao, T. S.; Tang, G. H.; Tao, W. Q., Implicit-explicit finite-difference Lattice Boltzmann method for compressible flows, Internat. J. Modern Phys. C, 18, 1961-1983 (2007) · Zbl 1151.82405
[25] Hejranfar, K.; Saadat, M. H.; Taheri, S., High-order weighted essentially nonoscillatory finite-difference formulation of the Lattice Boltzmann method in generalized curvilinear coordinates, Phys. Rev. E, 95, Article 023314 pp. (2017)
[26] Hejranfar, K.; Ezzatneshan, E., A high-order compact finite-difference Lattice Boltzmann method for simulation of steady and unsteady incompressible flows, Internat. J. Numer. Methods Fluids, 75, 713-746 (2014)
[27] Hejranfar, K.; Ezzatneshan, E., Implementation of a high-order compact finite-difference Lattice Boltzmann method in generalized curvilinear coordinates, J. Comput. Phys., 267, 28-49 (2014) · Zbl 1349.76475
[28] Ezzatneshan, E.; Hejranfar, K., Simulation of three-dimensional incompressible flows in generalized curvilinear coordinates using a high-order compact finite-difference Lattice Boltzmann method, Internat. J. Numer. Methods Fluids, 89, 235-255 (2019)
[29] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[30] Santhanam, N.; Lele. J. H. Ferziger, S. K., A robust high-order compact method for large eddy simulation, J. Comput. Phys., 191, 392-419 (2003) · Zbl 1051.76030
[31] Gaitonde, D. V.; Shang, J. S.; Young, J. L., Practical aspects of higher-order numerical schemes for wave propagation phenomena, Int. J. Numer. Methods Eng., 45, 1849-1869 (1999) · Zbl 0959.65103
[32] Visbal, M. R.; Gaitonde, D. V., High-order-accurate methods for complex unsteady subsonic flows, AIAA J., 37, 1231-1239 (1999)
[33] Fu, D.; Ma, Y., A high order accurate difference scheme for complex flow fields, J. Comput. Phys., 134, 1-15 (1997) · Zbl 0882.76054
[34] D. Fu, Y. Ma, Upwind compact schemes and applications, in: Proceedings of the 5th International Symposium on Computational Fluid Dynamics, 1993, pp. 184-190.
[35] Shah, A.; Yuan, L.; Khan, A., Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations, Appl. Math. Comput., 215, 3201-3213 (2010) · Zbl 1352.76084
[36] Fan, P., The standard upwind compact difference schemes for incompressible flow simulations, J. Comput. Phys., 322, 74-112 (2016) · Zbl 1351.76163
[37] Seta, T.; Takahashi, R., Numerical stability analysis of FDLBM, J. Stat. Phys., 107, 557-572 (2002) · Zbl 1007.82009
[38] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[39] Luo, L.-S., Theory of the Lattice Boltzmann method: Lattice Boltzmann models for nonideal gases, Phys. Rev. E, 62, 4982-4996 (2000)
[40] He, X.; Luo, L.-S., Lattice Boltzmann Model for the incompressible Navier-Stokes equation, J. Stat. Phys., 88, 927-944 (1997) · Zbl 0939.82042
[41] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1952), Cambridge University Press · Zbl 0049.26102
[42] Sofonea, V.; Sekerka, R. F., Viscosity of finite difference Lattice Boltzmann models, J. Comput. Phys., 184, 422-434 (2003) · Zbl 1062.76556
[43] Rao, P. R.; Schaefer, L. A., Numerical stability of explicit off-Lattice Boltzmann schemes: A comparative study, J. Comput. Phys., 285, 251-264 (2005) · Zbl 1351.76180
[44] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[45] Gottlieb, S.; Shu, C.-W., Total vatiation diminishing Runge-Ketta schemes, Math. Comp., 67, 73-85 (1998)
[46] Watari, M.; Tsutahara, M., Boundary conditions for finite difference Lattice Boltzmann method, Trans. Japan. Soc. Mech. Eng. B, 68, 3229-3236 (2002)
[47] Taylor, G. I., On the decay of vortices in a viscous fluid, Phil. Mag., 46, 671-674 (1923) · JFM 49.0607.02
[48] Minion, M. L.; Brown, D. L., Performance of under-resolved two-dimensional incompressible flow simulations, II, J. Comput. Phys., 138, 734-765 (1997) · Zbl 0914.76063
[49] Tian, Z. F.; Liang, X.; Yu, P. X., A higher order compact finite difference algorithm for solving the incompressible Navier-Stokes equations, Int. J. Numer. Methods Eng., 88, 511-532 (2011) · Zbl 1242.76216
[50] Zhao, B. X.; Tian, Z. F., High-resolution high-order upwind compact scheme-based numerical computation of natural convection flows in a square cavity, Int. J. Heat Mass Transfer, 98, 313-328 (2016)
[51] Yu, P. X.; Tian, Z. F., An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation, Comput. Math. Appl., 75, 3224-3243 (2018) · Zbl 1409.76093
[52] Zou, Q.; He, X., On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Phys. Fluids, 9, 1591-1598 (1997) · Zbl 1185.76873
[53] Erturk, E.; Corke, T. C.; Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Internat. J. Numer. Methods Fluids, 48, 747-774 (2005) · Zbl 1071.76038
[54] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[55] Sahin, M.; Owens, R. G., A novel fully implicit finite volume method applied to the lid-driven cavity problem—Part I: High Reynolds number flow calculations, Internat. J. Numer. Methods Fluids, 42, 57-77 (2003) · Zbl 1078.76046
[56] Bruneau, C.-H.; Jouron, C., An efficient scheme for solving steady incompressible Navier-Stokes equations, J. Comput. Phys., 89, 389-413 (1990) · Zbl 0699.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.