×

An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. (English) Zbl 1302.74167

Summary: In this paper, a fully coupled numerical model is developed for the modeling of the hydraulic fracture propagation in porous media using the extended finite element method in conjunction with the cohesive crack model. The governing equations, which account for the coupling between various physical phenomena, are derived within the framework of the generalized Biot theory. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. By taking the advantage of the cohesive crack model, the nonlinear fracture processes developing along the fracture process zone are simulated. The spatial discretization using the extended finite element method and the time domain discretization applying the generalized Newmark scheme yield the final system of fully coupled nonlinear equations, which involves the hydro-mechanical coupling between the fracture and the porous medium surrounding the fracture. The fluid leak-off and the length of fracture extension are obtained through the solution of the resulting system of equations, not only leading to the correct estimation of the fracture tip velocity as well as the fluid velocity within the fracture, but also allowing for the eventual formation of the fluid lag. It is illustrated that incorporating the coupled physical processes, i.e. the solid skeleton deformation, the fluid flow in the fracture and in the pore spaces of the surrounding porous medium and the hydraulic fracture propagation, is crucial to provide a correct solution for the problem of the fluid-driven fracture in porous media, where the poroelastic effects are significant.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76S05 Flows in porous media; filtration; seepage
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Geertsma, J.; de Klerk, F., A rapid method of predicting width and extent of hydraulically induced fractures, J. Pet. Technol., 21, 1571-1581 (1969)
[3] Geertsma, J.; Haafkens, R., A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures, J. Energy Res. Technol., 101, 8-19 (1979)
[4] Spence, D. A.; Sharp, P., Self-similar solutions for elastohydrodynamic cavity flow, Proc. R. Soc. London, 400, 289-313 (1985) · Zbl 0581.76007
[5] Garagash, D.; Detournay, E., The tip region of a fluid-driven fracture in an elastic medium, J. Appl. Mech., 67, 183-192 (2000) · Zbl 1110.74448
[6] Detournay, E., Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 35-45 (2004)
[7] Lecampion, B.; Detournay, E., An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag, Comput. Methods Appl. Mech. Eng., 196, 4863-4880 (2007) · Zbl 1173.74383
[8] Boone, T. J.; Ingraffea, A. R., A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media, Int. J. Numer. Anal. Methods Geomech., 14, 27-47 (1990)
[9] Simoni, L.; Secchi, S., Cohesive fracture mechanics for a multi-phase porous medium, Eng. Comput., 20, 675-698 (2003) · Zbl 1060.74065
[10] Secchi, S.; Simoni, L.; Schrefler, B. A., Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials, Int. J. Numer. Anal. Methods Geomech., 31, 331-345 (2007) · Zbl 1114.74061
[11] Rethore, J.; de Borst, R.; Abellan, M. A., A two-scale approach for fluid flow in fractured porous media, Int. J. Numer. Methods Eng., 71, 780-800 (2007) · Zbl 1194.76139
[12] Rethore, J.; de Borst, R.; Abellan, M. A., A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks, Comput. Mech., 42, 227-238 (2008) · Zbl 1154.76053
[13] Segura, J. M.; Carol, I., Coupled HM analysis using zero-thickness interface elements with double nodes. Part I: theoretical model, Int. J. Numer. Anal. Methods Geomech., 32, 2083-2101 (2008) · Zbl 1273.74546
[14] Lobao, M. C.; Eve, R.; Owen, D. R.J.; de Souza Neto, E. A., Modelling of hydro-fracture flow in porous media, Eng. Comput., 27, 129-154 (2010) · Zbl 1284.76354
[15] Khoei, A. R.; Barani, O. R.; Mofid, M., Modeling of dynamic cohesive fracture propagation in porous saturated media, Int. J. Numer. Anal. Methods Geomech., 35, 1160-1184 (2011) · Zbl 1282.74084
[16] Barani, O. R.; Khoei, A. R.; Mofid, M., Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture, Int. J. Fract., 167, 15-31 (2011) · Zbl 1282.74084
[17] Sarris, E.; Papanastasiou, P., Modeling of hydraulic fracturing in a poroelastic cohesive formation, Int. J. Geomech., 12, 160-167 (2012)
[18] Carrier, B.; Granet, S., Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312-328 (2012)
[19] Mohammadnejad, T.; Khoei, A. R., Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method, Int. J. Numer. Anal. Methods Geomech. (2012) · Zbl 1302.74167
[20] Settari, A., Simulation of hydraulic fracturing processes, SPE, 20, 487-500 (1980)
[21] Settari, A.; Cleary, M. P., Three-dimensional simulation of hydraulic fracturing, J. Pet. Technol., 36, 1177-1190 (1984)
[22] Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J., Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci., 44, 739-757 (2007)
[23] Lecampion, B., An extended finite element method for hydraulic fracture problems, Commun. Numer. Methods Eng., 25, 121-133 (2009) · Zbl 1156.74043
[24] Hunsweck, M. J.; Shen, Y.; Lew, A. J., A finite element approach to the simulation of hydraulic fractures with lag, Int. J. Numer. Anal. Methods Geomech. (2012)
[25] Biot, M. A., A general theory of three dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[26] Howard, G. C.; Fast, C. R., Optimum fluid characteristics for fracture extension, Drill. Prod. Pract., 261-270 (1957)
[27] Xu, X. P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
[28] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 2899-2938 (1996) · Zbl 0929.74101
[29] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267-1282 (1999) · Zbl 0932.74067
[30] Khoei, A. R.; Azadi, H.; Moslemi, H., Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique, Eng. Fract. Mech., 75, 2921-2945 (2008)
[31] Moslemi, H.; Khoei, A. R., 3D adaptive finite element modeling of non-planar curved crack growth using the weighted super-convergent patch recovery method, Eng. Fract. Mech., 76, 1703-1728 (2009)
[32] Khoei, A. R.; Moslemi, H.; Ardakany, K. M.; Barani, O. R.; Azadi, H., Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique, Int. J. Fract., 159, 21-41 (2009) · Zbl 1273.74454
[33] Azadi, H.; Khoei, A. R., Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing, Int. J. Numer. Methods Eng., 85, 1017-1048 (2011) · Zbl 1217.74114
[34] Song, S. H.; Paulino, G. H.; Buttlar, W. G., A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Eng. Fract. Mech., 73, 2829-2848 (2006)
[35] Melenk, J. M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289-314 (1996) · Zbl 0881.65099
[36] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 601-620 (1999) · Zbl 0943.74061
[37] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131-150 (1999) · Zbl 0955.74066
[38] Khoei, A. R.; Karimi, K., An enriched-FEM model for simulation of localization phenomenon in Cosserat continuum theory, Comput. Mater. Sci., 44, 733-749 (2008)
[39] Khoei, A. R.; Haghighat, E., Extended finite element modeling of deformable porous media with arbitrary interfaces, Appl. Math. Model., 35, 5426-5441 (2011) · Zbl 1228.74083
[40] Lewis, R. W.; Schrefler, B. A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998), John Wiley: John Wiley Chichester · Zbl 0935.74004
[41] Bazant, Z. P.; Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials (1998), CRC Press: CRC Press Boca Raton
[42] Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
[43] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960)
[44] Hillerborg, A.; Modeer, M.; Petersson, P. E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement Concr. Res., 6, 773-782 (1976)
[45] Wells, G. N.; Sluys, L. J., A new method for modeling cohesive cracks using finite elements, Int. J Numer. Meth. Eng., 50, 2667-2682 (2001) · Zbl 1013.74074
[46] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Eng. Fract. Mech., 69, 813-833 (2002)
[47] Remmers, J. J.C.; de Borst, R.; Needleman, A., The simulation of dynamic crack propagation using the cohesive segments method, J. Mech. Phys. Solids, 56, 70-92 (2008) · Zbl 1162.74438
[48] Witherspoon, P. A.; Wang, J. S.Y.; Iwai, K.; Gale, J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 1016-1024 (1980)
[49] Zienkiewicz, O. C.; Chan, A. H.C.; Pastor, M.; Schrefler, B. A.; Shiomi, T., Computational Geomechanics with Special Reference to Earthquake Engineering (1999), John Wiley: John Wiley New York · Zbl 0932.74003
[50] Khoei, A. R.; Azami, A. R.; Haeri, S. M., Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: a comparison of Pastor-Zienkiewicz and cap models, Comput. Geotech., 31, 385-410 (2004)
[51] Khoei, A. R.; Mohammadnejad, T., Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams, Comput. Geotech., 38, 142-166 (2011)
[52] Mohammadnejad, T.; Khoei, A. R., An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies, Comput. Mech., 51, 327-345 (2013) · Zbl 1398.74371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.