×

Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices. (English) Zbl 1429.65042

Summary: The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a regularized moving least-square method with nonsingular moment matrix is proposed. The shape functions obtained from the regularized MLS method still do not have the delta function property and may result in difficulty for imposing boundary conditions in regularized MLS based meshless method. To overcome this problem, a regularized improved interpolating moving least-square (IIMLS) method based on the IIMLS method is also proposed. Compared with the regularized MLS method, the regularized IIMLS not only has nonsingular moment matrices, but also obtains shape functions with delta function property. Shape functions of the proposed methods are compared in 1D and 2D cases, and the methods have been applied in curve fitting, surface fitting and meshless method in numerical examples.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)

Software:

Mfree2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 37, 155, 141-158 (1981) · Zbl 0469.41005
[2] Mirzaei, D.; Schaback, R.; Dehghan, M., On generalized moving least squares and diffuse derivatives, IMA J. Numer. Anal., 32, 3, 983-1000 (2012) · Zbl 1252.65037
[3] Levin, D., The approximation power of moving least-squares, Math. Comput. Am. Math. Soc., 67, 224, 1517-1531 (1998) · Zbl 0911.41016
[4] Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. T., Computing and rendering point set surfaces, IEEE Trans. Vis. Comput. Graph., 9, 1, 3-15 (2003)
[5] Liu, W.-K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Eng., 143, 1-2, 113-154 (1997) · Zbl 0883.65088
[6] Liu, G. R., Mesh Free Methods: Moving Beyond the Finite Element Method, 712 (2009)
[7] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 1, 3-47 (1996) · Zbl 0891.73075
[9] Zhang, J.; Tanaka, M.; Matsumoto, T., Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, Int. J. Numer. Methods Eng., 59, 9, 1147-1166 (2004) · Zbl 1048.65121
[10] Miao, Y.; Wang, Y.; Wang, Y., A meshless hybrid boundary-node method for Helmholtz problems, Eng. Anal. Bound. Elem., 33, 2, 120-127 (2009) · Zbl 1244.65229
[11] Wang, Q.; Miao, Y.; Zhu, H., A fast multipole hybrid boundary node method for composite materials, Comput. Mech., 51, 6, 885-897 (2013) · Zbl 1366.74082
[12] Wang, Q.; Miao, Y.; Zhu, H., A new formulation for thermal analysis of composites by hybrid boundary node method, Int. J. Heat. Mass Transf., 64, 322-330 (2013)
[13] Mirzaei, D., A greedy meshless local Petrov-Galerkin methodbased on radial basis functions, Numer. Methods Partial Differ. Eq., 32, 3, 847-861 (2016) · Zbl 1339.65220
[14] Salehi, R.; Dehghan, M., A moving least square reproducing polynomial meshless method, Appl. Numer. Math., 69, 34-58 (2013) · Zbl 1284.65137
[15] Wang, Q.; Yang, H., A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method, Eng. Anal. Bound. Elem., 54, 76-85 (2015) · Zbl 1403.74025
[16] Li, X., Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math., 99, 77-97 (2016) · Zbl 1329.65274
[17] Armentano, M. G.; Durán, R. G., Error estimates for moving least square approximations, Appl. Numer. Math., 37, 3, 397-416 (2001) · Zbl 0984.65096
[18] Ren, H.; Pei, K.; Wang, L., Error analysis for moving least squares approximation in 2D space, Appl. Math. Comput., 238, 527-546 (2014) · Zbl 1337.65157
[19] Armentano, M. G., Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. Anal., 39, 1, 38-51 (2001) · Zbl 1001.65014
[20] Zuppa, C., Good quality point sets and error estimates for moving least square approximations, Appl. Numer. Math., 47, 3-4, 575-585 (2003) · Zbl 1040.65034
[21] Mirzaei, D., Error bounds for GMLS derivatives approximations of Sobolev functions, J. Comput. Appl. Math., 294, 93-101 (2016) · Zbl 1327.65041
[22] Salehi, R.; Dehghan, M., A generalized moving least square reproducing kernel method, J. Comput. Appl. Math., 249, 120-132 (2013) · Zbl 1285.65080
[23] Dehghan, M.; Mohammadi, V., Error analysis of method of lines (MOL) via generalized interpolating moving least squares (GIMLS) approximation, J. Comput. Appl. Math., 321, 540-554 (2017) · Zbl 1366.65083
[24] Mirzaei, D., Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282, 237-250 (2015) · Zbl 1309.65137
[25] Dehghan, M.; Abbaszadeh, M., Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput. Methods Appl. Mech. Eng. (2017)
[26] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate, J. Comput. Appl. Math., 286, 211-231 (2015) · Zbl 1315.65086
[27] Kaljević, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. Numer. Methods Eng., 40, 16, 2953-2974 (1997) · Zbl 0895.73079
[28] Ju-Feng, W.; Feng-Xin, S.; Yu-Min, C., An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21, 9, Article 090204 pp. (2012)
[29] Wang, J.; Wang, J.; Sun, F.; Cheng, Y., An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems, Int. J. Comput. Methods, 10, 06, Article 1350043 pp. (2013) · Zbl 1359.65282
[30] Li, X., An interpolating boundary element-free method for three-dimensional potential problems, Appl. Math. Model., 39, 10, 3116-3134 (2015) · Zbl 1443.65407
[31] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: the Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press NewYork · Zbl 1132.65001
[32] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.),, 267-288 (1996) · Zbl 0850.62538
[33] Zou, H.; Hastie, T., Regularization and variable selection via the elastic net, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 67, 2, 301-320 (2005) · Zbl 1069.62054
[34] Joldes, G. R.; Chowdhury, H. A.; Wittek, A.; Doyle, B.; Miller, K., Modified moving least squares with polynomial bases for scattered data approximation, Appl. Math. Comput., 266, 893-902 (2015) · Zbl 1410.65019
[35] Chowdhury, H. A.; Wittek, A.; Miller, K.; Joldes, G. R., An element free Galerkin method based on the modified moving least squares approximation, J. Sci. Comput., 71, 1197-1211 (2017) · Zbl 06759491
[36] Liu, G.; Gu, Y., A matrix triangularization algorithm for the polynomial point interpolation method, Comput. Methods Appl. Mech. Eng., 192, 19, 2269-2295 (2003) · Zbl 1074.74059
[37] Li, X.; Li, S., On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72, 6, 1515-1531 (2016) · Zbl 1361.65090
[38] Belytschko, T.; Lu, Y. Y.; Gu, L., Element‐free Galerkin methods, Int. J. Numer. Methods Eng., 37, 2, 229-256 (1994) · Zbl 0796.73077
[39] Gu, Y.; Liu, G., A boundary point interpolation method for stress analysis of solids, Comput. Mech., 28, 1, 47-54 (2002) · Zbl 1115.74380
[40] Joldes, G. R.; Wittek, A.; Miller, K., Stable time step estimates for mesh‐free particle methods, Int. J. Numer. Methods Eng., 91, 4, 450-456 (2012) · Zbl 1253.74130
[41] Joldes, G. R.; Wittek, A.; Miller, K., Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems, Eng. Anal. Bound. Elem., 51, 52-63 (2015) · Zbl 1403.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.