×

Set-theoretic generators of rational space curves. (English) Zbl 1184.14052

Summary: We show how to calculate three low degree set-theoretic generators (i.e., algebraic surfaces) for all rational space curves of low degree (degree \(\leq 6\)) as well as for all higher degree rational space curves where at least one element of their \(\mu \)-basis has degree 1 from a \(\mu \)-basis of the parametrization. In addition to having low degree, at least two of these surface generators are always ruled surfaces. Whenever possible we also show how to compute two set-theoretic complete intersection generators for these rational space curves from a \(\mu \)-basis of their parametrization.

MSC:

14H50 Plane and space curves
13P99 Computational aspects and applications of commutative rings
14M10 Complete intersections
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boratynski, M., On a conormal module of smooth set-theoretic complete intersection, Trans. Amer. Math. Soc., 296, 1, 291-300 (1986) · Zbl 0608.14036
[2] Craighero, P. C., Una osservazione sulla curve di Cremona di \(P^3\): \(C = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4)\), Rend. Sem. Mat. Univ. Padova, 65, 177-190 (1981) · Zbl 0492.14020
[3] Craighero, P. C.; Gattazzo, R., The curve \(C = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4) \subset P^3\) is not set-theoretic complete intersection of two quartic surfaces, Rend. Sem. Mat. Univ. Padova, 76, 177-200 (1986) · Zbl 0613.14025
[4] Craighero, P. C.; Gattazzo, R., No rational nonsingular quartic curve \(C_4 \subset P^3\) can be set-theoretic complete intersection on a cubic surface, Rend. Sem. Mat. Univ. Padova, 81, 171-192 (1989) · Zbl 0706.14031
[5] Cox, D. A., Equations of parametric curves and surfaces via syzygies, Contemp. Math., 286, 1-20 (2001) · Zbl 1009.68174
[6] Cox, D.; Goldman, R.; Zhang, M., On the validity of implicitization by moving quadrics for rational surfaces with no base points, J.Symbolic Comput., 29, 419-440 (2000) · Zbl 0959.68124
[7] Cox, D. A.; Little, J.; O’Shea, D., Using Algebraic Geometry (1998), Springer
[8] Cox, D. A.; Sederberg, T.; Chen, F., The moving line ideal basis of planar rational curves, Computer Aided Geometric Design, 15, 803-827 (1998) · Zbl 0908.68174
[9] Dohm, M., Implicitization of rational ruled surfaces with \(\mu \)-basis, J.Symbolic Comput., 44, 479-489 (2009) · Zbl 1159.14309
[10] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry (1994), Springer
[11] Eisenbud, D.; Evans, G., Every algebraic set in \(n\)-space is the intersection of \(n\) hypersurfaces, Invent. Math., 19, 107-112 (1973) · Zbl 0287.14002
[12] Jaffe, D. B., On set theoretic complete intersections in \(P^3\), Math. Ann., 285, 165-176 (1989) · Zbl 0661.14027
[13] Kneser, M., Über die Darstellung algebraischer Raumkurven als Durchschnitte von Flächen, Arch. Math., 11, 157-158 (1960) · Zbl 0093.34202
[14] Kronecher, L., Grundzüge einer arithmetischen Theorie der algebraischen Größen, J. Reine Angew. Math., 92, 1-123 (1882)
[15] Kumar, M., Set-theoretic generation of ideals, Mémoires de la Société Mathématique de France, Sér, 38, 2, 135-143 (1989) · Zbl 0715.14043
[16] Murthy, M., Affine varieties as complete intersections, in: Nagata, M. (Ed.) Proc. of the Int. Symposium on Algebraic Geometry. Kyoto, 1977; Murthy, M., Affine varieties as complete intersections, in: Nagata, M. (Ed.) Proc. of the Int. Symposium on Algebraic Geometry. Kyoto, 1977 · Zbl 0418.14028
[17] Sederberg, T., Chen, F., 1995. Implicitization using moving curves and surfaces, SIGGRAPH’95, Annual Conference Series, pp. 301-308; Sederberg, T., Chen, F., 1995. Implicitization using moving curves and surfaces, SIGGRAPH’95, Annual Conference Series, pp. 301-308
[18] Sederberg, T.; Goldman, R.; Du, H., Implicitizing rational curves by the method of moving algebraic curves, J.Symbolic Comput., 23, 153-175 (1997) · Zbl 0872.68193
[19] Sederberg, T.; Saito, T.; Qi, D.; Klimaszewski, K., Curve implicitization using moving lines, Comput. Aided Geom. Design, 11, 687-706 (1994) · Zbl 0875.68827
[20] Sederberg, T.; Saito, T.; Qi, D.; Klimaszewski, K., Curve implicitization using moving lines, Comput. Aided Geom. Design, 11, 687-706 (1994) · Zbl 0875.68827
[21] Shalaby, M.; Jüttler, B., Approximate implicitization of space curves and of surfaces of revolution, (Piene, R.; Jüttler, B., Geometric Modeling and Algebraic Geometry (2008), Springer), 215-228 · Zbl 1147.53006
[22] Song, N.; Goldman, R., \( \mu \)-bases for polynomial systems in one variable, Computer Aided Geometric Design, 26, 217-230 (2009) · Zbl 1205.65043
[23] Stagnaro, E., Sulle curve razionali non singolari di ordine 4 di \(P^3\), Rend. Sem. Mat. Univ. Padova, 101, 51-88 (1983)
[24] Van der Waerden, B. L., Review, Zentralblatt für Math., 24, 276 (1941)
[25] Wang, H.; Jia, X.; Goldman, R., Axial moving planes and singularities of rational space curves, Computer Aided Geometric Design, 26, 300-316 (2009) · Zbl 1205.14077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.