×

On the hot spots of quantum graphs. (English) Zbl 1503.81034

Summary: We undertake a systematic investigation of the maxima and minima of the eigenfunctions associated with the first nontrivial eigenvalue of the Laplacian on a metric graph equipped with standard (continuity-Kirchhoff) vertex conditions. This is inspired by the famous hot spots conjecture for the Laplacian on a Euclidean domain, and the points on the graph where maxima and minima are achieved represent the generically “hottest” and “coldest” spots of the graph. We prove results on both the number and location of the hot spots of a metric graph, and also present a large number of examples, many of which run contrary to what one might naïvely expect. Amongst other results we prove the following: (i) generically, up to arbitrarily small perturbations of the graph, the points where minimum and maximum, respectively, are attained are unique; (ii) the minima and maxima can only be located at the vertices of degree one or inside the doubly connected part of the metric graph; and (iii) for any fixed graph topology, for some choices of edge lengths all minima and maxima will occur only at degree-one vertices, while for others they will only occur in the doubly connected part of the graph.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Adami; E. Serra; P. Tilli, Negative energy ground states for the \(L^2\)-critical NLSE on metric graphs, Commun. Math. Phys., 352, 387-406 (2017) · Zbl 1372.35319 · doi:10.1007/s00220-016-2797-2
[2] R. Adami; E. Serra; P. Tilli, Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal., 271, 201-223 (2016) · Zbl 1338.35448 · doi:10.1016/j.jfa.2016.04.004
[3] R. Adami; E. Serra; P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equ., 54, 743-761 (2015) · Zbl 1330.35484 · doi:10.1007/s00526-014-0804-z
[4] M. Aizenman; H. Schanz; U. Smilansky; S. Warzel, Edge switching transformations of quantum graphs, Acta Phys. Polon. A, 132, 1699-1703 (2017)
[5] L. Alon, Quantum graphs-Generic eigenfunctions and their nodal count and Neumann count statistics, Ph.D thesis, Technion, Israel, arXiv: 2010.03004.
[6] L. Alon and R. Band, Neumann domains on quantum graphs, arXiv: 1911.12435. · Zbl 1406.81037
[7] L. Alon; R. Band; G. Berkolaiko, Nodal statistics on quantum graphs, Commun. Math. Phys., 362, 909-948 (2018) · Zbl 1406.81037 · doi:10.1007/s00220-018-3111-2
[8] L. Alon, R. Band, M. Bersudsky and S. Egger, Neumann Domains on Graphs and Manifolds, arXiv: 1805.07612. · Zbl 1473.05163
[9] S Ariturk, Eigenvalue estimates on quantum graphs, arXiv: 1609.07471. · Zbl 1364.35225
[10] R. Band, The nodal count \(\{0, 1, 2, 3, \ldots\}\) implies the graph is a tree, Philos. Trans. R. Soc. Lond. A, 372 (2014), (24pp). · Zbl 1352.34019
[11] R. Band; G. Berkolaiko; H. Raz; U. Smilansky, The number of nodal domains of graphs as a stability index of graph partitions, Commun. Math. Phys., 311, 815-838 (2012) · Zbl 1244.81026 · doi:10.1007/s00220-011-1384-9
[12] R. Band; G. Berkolaiko; U. Smilansky, Dynamics of nodal points and the nodal count of a family of quantum graphs, Ann. Henri Poincaré, 13, 145-184 (2012) · Zbl 1242.81085 · doi:10.1007/s00023-011-0124-1
[13] R. Band; D. Fajman, Topological properties of Neumann domains, Ann. Henri Poincaré, 17, 2379-2407 (2016) · Zbl 1350.53050 · doi:10.1007/s00023-016-0468-7
[14] R. Band; G. Lévy, Quantum graphs which optimize the spectral gap, Ann. Henri Poincaré, 18, 3269-3323 (2017) · Zbl 1431.81055 · doi:10.1007/s00023-017-0601-2
[15] R. Bañuelos; K. Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal., 164, 1-33 (1999) · Zbl 0938.35045 · doi:10.1006/jfan.1999.3397
[16] G. Berkolaiko; J. B. Kennedy; P. Kurasov; D. Mugnolo, Surgery principles for the spectral analysis of quantum graphs, Trans. Amer. Math. Soc., 372, 5153-5197 (2019) · Zbl 1451.34029 · doi:10.1090/tran/7864
[17] G. Berkolaiko, J. B. Kennedy, P. Kurasov and D. Mugnolo, Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A: Math. Theor., 50 (2017), 365201 (29pp). · Zbl 1456.81193
[18] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs. Math. Surveys and Monographs vol. 186, American Mathematical Society, Providence, RI, 2013. · Zbl 1318.81005
[19] G. Berkolaiko and P. Kuchment, Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths, Spectral Geometry, 117-137, Proc. Sympos. Pure Math., vol.84, Amer. Math. Soc., Providence, RI, 2012. · Zbl 1317.81127
[20] G. Berkolaiko; Y. Latushkin; S. Sukhtaiev, Limits of quantum graph operators with shrinking edges, Adv. Math., 352, 632-669 (2019) · Zbl 1422.81101 · doi:10.1016/j.aim.2019.06.017
[21] G. Berkolaiko; W. Liu, Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph, J. Math. Anal. Appl., 445, 803-818 (2017) · Zbl 1348.81243 · doi:10.1016/j.jmaa.2016.07.026
[22] D. Borthwick, L. Corsi and K. Jones, Sharp diameter bound on the spectral gap for quantum graphs, arXiv: 1905.03071. · Zbl 1465.81038
[23] K. Burdzy; W. Werner, A counterexample to the “hot spots” conjecture, Ann. Math., 149, 309-317 (1999) · Zbl 0919.35094 · doi:10.2307/121027
[24] C. Cacciapuoti, Scale invariant effective Hamiltonians for a graph with a small compact core, Symmetry, 11 (2019), 359. · Zbl 1423.81082
[25] C. Cacciapuoti; D. Finco; D. Noja, Ground state and orbital stability for the NLS equation on a general starlike graph with potentials, Nonlinearity, 30, 3271-3303 (2017) · Zbl 1373.35284 · doi:10.1088/1361-6544/aa7cc3
[26] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. in Problems in analysis, Princeton Univ. Press, Princeton, N. J., 1970, 195-199. · Zbl 0212.44903
[27] M. K. Chung, S. Seo, N. Adluru and H. K. Vorperian, Hot Spots Conjecture and Its Application to Modeling Tubular Structures. In K. Suzuki, F. Wang, D. Shen and P. Yan (eds), Machine Learning in Medical Imaging, Lecture Notes in Computer Science, vol. 7009, Springer, Berlin-Heidelberg, 2011,225-232.
[28] S. Dovetta and L. Tentarelli, \(L^2\)-critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features, Calc. Var. Partial Differ. Equ., 58 (2019), 26 pp. · Zbl 1432.35212
[29] L. C. Evans, The Fiedler Rose: On the extreme points of the Fiedler vector, arXiv: 1112.6323.
[30] L. Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble), 55, 199-211 (2005) · Zbl 1074.34078
[31] L. Friedlander, Genericity of simple eigenvalues for a metric graph, Israel J. Math., 146, 149-156 (2005) · Zbl 1077.58016 · doi:10.1007/BF02773531
[32] H. Gernandt; J. P. Pade, Schur reduction of trees and extremal entries of the Fiedler vector, Linear Algebra Appl., 570, 93-122 (2019) · Zbl 1411.05160 · doi:10.1016/j.laa.2019.02.008
[33] S. Gnutzmann, U. Smilansky and J. Weber, Nodal counting on quantum graphs, Special section on quantum graphs, Waves Random Media, 14 (2004), S61-S73. · Zbl 1063.81056
[34] E. M. Harrell II and A. V. Maltsev, Localization and landscape functions on quantum graphs, arXiv: 1803.01186. · Zbl 1433.81089
[35] E. M. Harrell II; A. V. Maltsev, On Agmon metrics and exponential localization for quantum graphs, Commun. Math. Phys., 359, 429-448 (2018) · Zbl 1388.81130 · doi:10.1007/s00220-018-3124-x
[36] M. Hofmann, An existence theory for nonlinear equations on metric graphs via energy methods, arXiv: 1909.07856.
[37] M. Hofmann, J. B. Kennedy, D. Mugnolo and M. Plümer, Asymptotics and estimates for spectral minimal partitions of metric graphs, arXiv: 2007.01412. · Zbl 1467.81051
[38] C. Judge; S. Mondal, Euclidean triangles have no hot spots, Ann. Math., 191, 167-211 (2020) · Zbl 1444.35119 · doi:10.4007/annals.2020.191.1.3
[39] A. Kairzhan, D. E. Pelinovsky and R. H. Goodman, Drift of spectrally stable shifted states on star graphs, SIAM J. Appl. Dyn. Syst., 18 (2019), 1723-1755. · Zbl 1435.35401
[40] G. Karreskog, P. Kurasov and I. Trygg Kupersmidt, Schrödinger operators on graphs: symmetrization and Eulerian cycles, Proc. Amer. Math. Soc., 144 (2016) 1197-1207. · Zbl 1355.34053
[41] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. · Zbl 0836.47009
[42] J. B. Kennedy, P. Kurasov, C. Léna and D. Mugnolo, A theory of spectral partitions of metric graphs, Calc. Var. Partial Differ. Equ., 60 (2021), 63 pp. · Zbl 1462.35222
[43] J. B. Kennedy; P. Kurasov; G. Malenová; D. Mugnolo, On the spectral gap of a quantum graph, Ann. Henri Poincaré, 17, 2439-2473 (2016) · Zbl 1354.34057 · doi:10.1007/s00023-016-0460-2
[44] J. B. Kennedy and J. Rohleder, On the hot spots of quantum trees, Proc. Appl. Math. Mech., 18 (2018), e201800122. · Zbl 1503.81034
[45] D. Krejčiřík; M. Tušek, Location of hot spots in thin curved strips, J. Differ. Equ., 266, 2953-2977 (2019) · Zbl 1407.35069 · doi:10.1016/j.jde.2018.08.053
[46] P. Kurasov, G. Malenová and S. Naboko, Spectral gap for quantum graphs and their connectivity, J. Phys. A, 46 (2013), 275309. · Zbl 1270.81100
[47] P. Kurasov; S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory, 4, 211-219 (2014) · Zbl 1301.34108 · doi:10.4171/JST/67
[48] C. Lange; S. Liu; N. Peyerimhoff; O. Post, Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians, Calc. Var. Partial Differ. Equ., 54, 4165-4196 (2015) · Zbl 1330.05103 · doi:10.1007/s00526-015-0935-x
[49] R. Lederman and S. Steinerberger, Extreme values of the Fiedler vector on trees, arXiv: 1912.08327.
[50] J. R. Lee, S. O. Gharan and L. Trevisan, Multiway spectral partitioning and higher-order Cheeger inequalities, J. ACM, 61 (2014), 30 pp. · Zbl 1321.05151
[51] J. Lefèvre, Fiedler vectors and elongation of graphs: a threshold phenomenon on a particular class of trees, arXiv: 1302.1266.
[52] J. Rohleder, Eigenvalue estimates for the Laplacian on a metric tree, Proc. Amer. Math. Soc., 145, 2119-2129 (2017) · Zbl 1367.34029 · doi:10.1090/proc/13403
[53] J. Rohleder; C. Seifert, Spectral monotonicity for Schrödinger operators on metric graphs, Oper. Theory Adv. Appl., 281, 291-310 (2020) · Zbl 1479.34055
[54] B. Siudeja, Hot spots conjecture for a class of acute triangles, Math. Z., 280, 783-806 (2015) · Zbl 1335.35164 · doi:10.1007/s00209-015-1448-1
[55] S. Steinerberger, Hot Spots in Convex Domains are in the Tips (up to an Inradius), Commun. Partial Differ. Equ., 45, 641-654 (2020) · Zbl 1444.35034 · doi:10.1080/03605302.2020.1750427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.