×

Counting monic irreducible polynomials \(P\) in \(\mathbb F_q[X]\) for which order of \(X\pmod P\) is odd. (English) Zbl 1142.11082

H. Hasse [Math. Ann. 166, 19–23 (1966; Zbl 0139.27501)] showed the Dirichlet density of the set of primes \(p\) for which the order of 2 modulo \(p\) is odd is 7/24. Here the density \(\delta_q\) of monic irreducible polynomials \(P\in \mathbb F_q[x]\) for which the order of \(x\) modulo \(P\) is odd is computed. \(\delta_q\) is at most 7/24 and this bound is reached exactly for \(q\) an odd power of a prime \(p\equiv 3\pmod8\). Average densities are also computed. There are two proofs pf the main result: one imitates Hasse’s work and the other is elementary.

MSC:

11T06 Polynomials over finite fields
11B05 Density, gaps, topology
11N05 Distribution of primes

Citations:

Zbl 0139.27501
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] C. Ballot, Density of prime divisors of linear recurrences. Memoirs of the A.M.S., vol. 115, Nu. 551 (1995). · Zbl 0827.11006
[2] C. Ballot, Competing prime asymptotic densities in \(\mathbb{F}_q[X]\). A discussion. Submitted preprint. · Zbl 1239.11011
[3] C. Ballot, An elementary method to compute prime densities in \(\mathbb{F}_q[X]\). To appear in Integers. · Zbl 1169.11039
[4] R. Descombes, Éléments de théorie des nombres. Presses Universitaires de France (1986). · Zbl 0584.10001
[5] J. von zur Gathen et als, Average order in cyclic groups. J. Theor. Nombres Bordx, vol. 16, Nu. 1, (2004), 107-123. · Zbl 1079.11003
[6] H. H. Hasse, Über die Dichte der Primzahlen \(p\), für die eine vorgegebene ganzrationale Zahl \(a\ne 0\) von gerader bzw. ungerader Ordnung mod \(p\) ist. Math. Annale 166 (1966), 19-23. · Zbl 0139.27501
[7] J. C. Lagarias, The set of primes dividing the Lucas Numbers has density 2/3. Pacific J. Math., vol. 118, Nu. 2 (1985), 449-461 and “Errata”, vol. 162 (1994), 393-396. · Zbl 0790.11014
[8] S. Lang, Algebraic Number Theory. Springer-Verlag, 1986. · Zbl 0601.12001
[9] R. R. Laxton, Arithmetic Properties of Linear Recurrences. Computers and Number Theory (A.O.L. Atkin and B.J. Birch, Eds.), Academic Press, New York, 1971, 119-124. · Zbl 0226.10012
[10] P. Moree, On the prime density of Lucas sequences. J. Theor. Nombres Bordx, vol. 8, Nu. 2, (1996), 449-459. · Zbl 0873.11058
[11] P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class. Finite fields Appl., vol. 10, Nu. 3, (2004), 438-463. · Zbl 1061.11050
[12] P. Moree & P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arithm., vol. 82, Nu. 4, (1997), 403-410. · Zbl 0913.11048
[13] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers, 1974. · Zbl 0276.12002
[14] K. Prachar, Primzahlverteilung. Springer-Verlag, 1957. · Zbl 0080.25901
[15] M. Rosen, Number Theory in Function Fields. Springer-Verlag, Graduate texts in mathematics 210, 2002. · Zbl 1043.11079
[16] J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. · Zbl 0432.10001
[17] W. Sierpinski, Sur une décomposition des nombres premiers en deux classes. Collect. Math., vol. 10, (1958), 81-83. · Zbl 0084.27106
[18] H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993. · Zbl 0816.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.