×

Groups acting on dendrons. (English. Russian original) Zbl 1355.54044

J. Math. Sci., New York 212, No. 5, 558-565 (2016); translation from Zap. Nauchn. Semin. POMI 415, 62-74 (2013).
A dendron is a compact, connected space in which every pair of points can be separated by deleting a third point. If \(G\) is a (discrete) group acting on a dendron \(X\) by homeomorphisms and if all orbits contain at least three points, then \(G\) contains a nonabelian free subgroup and the action is strongly proximal, hence \(G\) does not preserve any regular Borel probability measures on \(X\) and is not amenable. It follows from this result that every dendron \(X\) is a von Neumann space, i.e., every group acting on \(X\) by homeomorphisms either contains a nonabelian free subgroup or preserves some regular Borel probability measure.

MSC:

54H15 Transformation groups and semigroups (topological aspects)
54F50 Topological spaces of dimension \(\leq 1\); curves, dendrites
22F10 Measurable group actions
60B05 Probability measures on topological spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. A. Adeleke and P. M. Neumann, “Relations related to betweenness: their structure and automorphisms,” Mem. Amer. Math. Soc., 623, Amer. Math. Soc., Providence (1998). · Zbl 0896.08001
[2] D. V. Anosov, “On the contribution of N.N. Bogolyubov to the theory of dynamical systems,” Russ. Math. Surv., 49, 1-18 (1994). · Zbl 0877.34003 · doi:10.1070/RM1994v049n05ABEH002417
[3] J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Stud., 153, North-Holland (1988). · Zbl 0654.54027
[4] N. N. Bogolyubov, “On some ergodic properties of continuous transformation groups,” Nauch. Zap. Kiev. Univ. Fiz.-Mat. Sb., 4, 45-53 (1939).
[5] V. V. Benyash-Krivetz and Hua Suin, Groups With Periodic Paired Relations [in Russian], RIVSH, Minsk (2010).
[6] B. H. Bowditch, “Treelike structures arising from continua and convergence groups,” Mem. Amer. Math. Soc., 662, Amer. Math. Soc., Providence (1999). · Zbl 0961.20034
[7] B. H. Bowditch and J. Crisp, “Archimedean actions on median pretrees,” Math. Proc. Camb. Phil. Soc., 130, 383-400 (2001). · Zbl 1034.20022 · doi:10.1017/S0305004101004996
[8] P. de la Harpe, R. I. Grigorchuk, and T. Ceccherini-Silberstein, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces,” Proc. Steklov Inst. Math., 224, 57-97 (1999). · Zbl 0968.43002
[9] J. J. Charatonik and W. J. Charatonik, “Dendrites,” Aportaciones Mat. Comun., 22, 227-253 (1998). · Zbl 0967.54034
[10] I. M. Chiswell, Introduction to Λ-trees, World Scientific Publishing Co. (2001). · Zbl 1004.20014
[11] M. Culler and J. Morgan, “Group actions on ℝ-trees,” Proc. London Math. Soc., 55, 571-604 (1987). · Zbl 0658.20021 · doi:10.1112/plms/s3-55.3.571
[12] T. Giordano and P. de la Harpe, “Moyennabilité des groupes dénombrables et actions sur les espaces de Cantor,” C. R. Acad. Sci. Paris, Sér. I Math., 324, 1255-1258 (1997). · Zbl 0878.43003 · doi:10.1016/S0764-4442(99)80409-1
[13] S. Glasner, “Topological dynamics and group theory,” Trans. Amer. Math. Soc., 187, 327-334 (1974). · Zbl 0251.54023 · doi:10.1090/S0002-9947-1974-0336723-1
[14] S. Glasner, “Compressibility properties in topological dynamics,” Amer. J. Math., 97, 148-171 (1975). · Zbl 0298.54023 · doi:10.2307/2373665
[15] S. Glasner, “Proximal flows,” Lect. Notes Math., 517 (1976). · Zbl 0322.54017
[16] N. Kopteva and G. Williams, “The Tits alternative for non-spherical Pride groups,” Bull. Lond. Math. Soc., 40, 57-64 (2008). · Zbl 1146.20024 · doi:10.1112/blms/bdm092
[17] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin etc. (1977). · Zbl 0368.20023
[18] A. V. Malyutin, “Pretrees and the shadow topology,” PDMI Preprint 23 (2012). · Zbl 1331.54037
[19] A. V. Malyutin, “Classification of the group actions on the real line and circle,” Algebra Analiz, 19, 156-182 (2007). · Zbl 1209.37009
[20] G. A. Margulis, “Free subgroups of the homeomorphism group of the circle,” C. R. Acad. Sci. Paris, Sér. I Math., 331, 669-674 (2000). · Zbl 0983.37029 · doi:10.1016/S0764-4442(00)01694-3
[21] J. C. Mayer, J. Nikiel, and L. G. Oversteegen, “Universal spaces for R-trees,” Trans. Amer. Math. Soc., 334, 411-432 (1992). · Zbl 0787.54036
[22] J. van Mill and E. Wattel, “Dendrons,” in: Topology and Order Structures, Part 1, Math. Centre Tracts, 142, Math. Centrum, Amsterdam (1981), pp. 59-81. · Zbl 0469.54017
[23] T. B. Muenzenberger, R. E. Smithson, and L. E.Ward, Jr., “Characterizations of arboroids and dendritic spaces,” Pacific J. Math., 102, 107-121 (1982). · Zbl 0496.54031 · doi:10.2140/pjm.1982.102.107
[24] J. von Neumann, “Zur allgemeinen Theorie des Masses,” Fund. Math., 13, 73-116 (1929). · JFM 55.0151.01
[25] A. Yu. Ol’shanskii, “On the problem of the existence of an invariant mean on a group,” Usp. Mat. Nauk, 35, 180-181 (1980). · Zbl 0465.20030
[26] A. Yu. Ol’shanskii and M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups,” Publ. Math. Inst. Hautes Études Sci., 96 (2002), 43-169 (2003). · Zbl 1050.20019 · doi:10.1007/s10240-002-0006-7
[27] I. Pays and A. Valette, “Sous-groupes libres dans les groupes d’automorphismes d’arbres,” Enseign. Math., 37, 151-174 (1991). · Zbl 0744.20024
[28] J.-P. Serre, Trees, Springer, New York (1980). · Zbl 0548.20018 · doi:10.1007/978-3-642-61856-7
[29] E. Shi, S. Wang, and L. Zhou, “Minimal group actions on dendrites,” Proc. Amer. Math. Soc., 138, 217-223 (2010). · Zbl 1191.37009 · doi:10.1090/S0002-9939-09-10000-X
[30] L. E. Ward, Jr., “On dendritic sets,” Duke Math J., 25, 505-513 (1958). · Zbl 0092.39603 · doi:10.1215/S0012-7094-58-02543-2
[31] L. E.Ward, Jr., “Axioms for cutpoints,” in: General Topology and Modern Analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), Academic Press, New York (1981), pp. 327-336. · Zbl 0892.54022
[32] W. Woess, “Fixed sets and free subgroups of groups acting on metric spaces,” Math. Z., 214, 425-440 (1993). · Zbl 0892.54022 · doi:10.1007/BF02572415
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.