×

Modeling large-deformation-induced microflow in soft biological tissues. (English) Zbl 1113.76090

Summary: The homogenization approach to multiscale modeling of soft biological tissues is presented. The homogenized model describes the relationship between the macroscopic hereditary creep behavior and the microflow in a fluid-saturated dual-porous medium at the microscopic level. The micromodel is based on Biot’s system for quasistatic deformation processes, modified for the updated Lagrangian formulation to account for coupling the fluid diffusion through a porous solid undergoing large deformation. Its microstructure is constituted by fluid-filled inclusions embedded in the porous matrix. The tangential stiffness coefficients and the retardation stress for the macromodel are derived for a time-stepping algorithm. Numerical examples are discussed, showing the strong potential of the model for simulations of deformation-driven physiological processes at the microscopic scale.

MSC:

76S05 Flows in porous media; filtration; seepage
76M50 Homogenization applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire G. (1992). Homogenization and two-scale convergence. SIAM J. Math. Anal. 23:1482–1518 · Zbl 0770.35005 · doi:10.1137/0523084
[2] Baek S., Srinivasa A.S. (2004). Diffusion of a fluid through an elastic solid undergoing large deformation. Nonlin. Mech. 39:201–218 · Zbl 1213.76072 · doi:10.1016/S0020-7462(02)00153-1
[3] de Boer R. (2000). Theory of Porous Media. Springer, Berlin Heidelberg New York · Zbl 0961.74021
[4] Bourgeat A., Chechkin G.A., Piatnitski L. (2003). Singular double porosity model. Applic. Anal. 82:103–116 · Zbl 1290.35195 · doi:10.1080/0003681031000063739
[5] Brezzi F., Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York · Zbl 0788.73002
[6] Campen D.H., Huyghe J.M., Bovendeerd P.H.M., Arts T. (1994). Biomechanics of the heart muscle. Eur. J. Mech. A/Solids 13:19–41 · Zbl 0815.73045
[7] Cimrman R., Rohan E. (2003). Modeling heart tissue using a composite muscle model with blood perfusion. In: Bathe K.J. (eds) Computational Fluid and Solid Mechanics 2003. Elsevier, Amsterdam, pp 1642–1646
[8] Cioranescu D., Donato P. (1999). An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications 17. Oxford University Press, Oxford · Zbl 0939.35001
[9] Cioranescu D., Saint Jean Paulin J. (1999). Homogenization of Reticulated Structures. Springer, Berlin Heidelberg New York Applied Mathematical Sciences, vol. 136 · Zbl 0929.35002
[10] Clopeau Th., Ferrín J.L., Gilbert R.P., Mikelić A. (2001). Homogenizing the acoustic properties of the seabed, part II. Math. Comput. Modell. 33:821–841 · Zbl 1050.76562 · doi:10.1016/S0895-7177(00)00283-1
[11] Frijns, A.J.H.: A four-component theory applied to cartilaginous tissues: numerical modelling and experiments. Ph.D. Thesis, Eindhoven University of Technology (2000) · Zbl 0966.92002
[12] Frijns A.J.H., Huyghe J.M., Janssen J.D. (1997). A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int. J. Eng. Sci. 35:1419–1429 · Zbl 0916.73037 · doi:10.1016/S0020-7225(97)00047-5
[13] Hiroshi M., Yoshitaka H., Hayashi K. (2000). A newly designed tensile tester for cells and its application to fibroblast. J. Biomech. 33:97–104 · doi:10.1016/S0021-9290(99)00161-X
[14] Holecek, M., Moravec, F.: Hyperelastic model of a material whose microstructure is formed by ”balls and springs”. Accepted by Int. J. Solids Struct. (2006)
[15] Holzapfel G.A. (2000). Nonlinear Solid Mechanics. Wiley, Chichester
[16] Hornung U. (1997). Homogenization and Porous Media. Springer, Berlin Heidelberg New York · Zbl 0872.35002
[17] Huyghe J.M., van Campen D.H. (1995). Finite deformation theory of hierarchically arranged porous solids I, II. Int. J. Eng. Sci. 33:1861–1886 · Zbl 0899.73440 · doi:10.1016/0020-7225(95)00042-V
[18] Huyghe J.M., Janssen J.D. (1997). Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35:793–802 · Zbl 0903.73004 · doi:10.1016/S0020-7225(96)00119-X
[19] Ingber D.E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91:877–887 · doi:10.1161/01.RES.0000039537.73816.E5
[20] Keener J., Sneyd J. (1998). Mathematical Physiology. Interdisciplinary Applied Mathematics 8. Springer, Berlin Heidelberg New York · Zbl 0913.92009
[21] Kouznetsova V., Geers M.G.D., Breklemans W.A.M. (2002). Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54:1235–1260 · Zbl 1058.74070 · doi:10.1002/nme.541
[22] Murad M.A., Cushman J.H. (1996). Multiscale flow and deformation in hydrophilic swelling media. Int. J. Eng. Sci. 34:13–338 · Zbl 0900.76622 · doi:10.1016/0020-7225(95)00057-7
[23] Murad A.M., Guerreiro J.N., Loula A.F.D. (2001). Micromechanical computational modelling of secondary consolidation and hereditary creep in soils. Comput. Methods Appl. Mech. Eng. 190:1985–2016 · Zbl 1114.74490 · doi:10.1016/S0045-7825(00)00218-8
[24] Rohan E. (2002a). Mathematical modelling of soft tissues. Habilitation Thesis, University of West Bohemia, Plzeň
[25] Rohan, E.: Homogenization of highly deformed media. In: Proceedings of Modelován a měření v mechanice kontinua, Konstitutivní vztahy. VTS Škoda výzkum, Pilsen, Nečtiny (2002b)
[26] Rohan, E.: A two scale updated Lagrangian algorithm for large deformation problems in heterogeneous media. In: Plešek J, Praha (ed.) Proceedings of Euromech Colloquium 430: Formulations and constitutive laws for very large strains. Institute of Termomechanics, 199–201 (2002c)
[27] Rohan E. (2003a). Sensitivity strategies in modelling heterogeneous media undergoing finite deformation. Math. Comput. Simul. 61:261–270 · Zbl 1043.74038 · doi:10.1016/S0378-4754(02)00082-4
[28] Rohan, E.: On homogenization of double diffusion problem in deforming porous media. In: Proceedings of the 19th Conference Computational Mechanics. pp. 389–396, Nečtiny (2003b)
[29] Rohan, E., Cimrman, R.: Homogenization based modelling of microstructural interactions in soft tissues. In: Proceedings of WCCM 2002, electronic publication: http://wccm.tuwien.ac.at (2002)
[30] Rohan, E., Cimrman, R.: Numerical modelling and homogenization of large deforming porous media. In: Proceedings of the 7th International Conference on Computational Structures Technology (2004) · Zbl 1132.76052
[31] Rohan E., Cimrman R., Lukeš V. (2006). Numerical modelling and homogenized constitutive law of large deforming fluid saturated heterogeneous solids. Comput. Struct. 84:1095–1114 · doi:10.1016/j.compstruc.2006.01.008
[32] Sanchez–Palencia E. (1978). Non-homogeneous media and vibration theory. Lecture Notes in Physics 127. Springer, Berlin Heidelberg New York · Zbl 0432.70002
[33] Showalter R.E. (2000). Diffusion in poro-elastic media. J. Math. Anal. Appl. 251:310–340 · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[34] Showalter R.E., Momken B. (2002). Single-phase flow in composite poro-elastic media. Math. Methods Appl. Sci. 25:115–139 · Zbl 1097.35067 · doi:10.1002/mma.276
[35] Showalter, R.E., Visarraga, D.B.: Double-diffusion models from a highly heterogeneous medium. http://www.ticam.utexas.edu/reports/2002.html (2002) · Zbl 1049.35033
[36] Simon B.R., Liable J.P., Pflaster D., Yuan Y., Krag M.H. (1996). A poroelastic finite element formulation including transport and swelling in soft tissue structures. J. Biomech. Eng. 118:1–9 · doi:10.1115/1.2795941
[37] Terada K., Kikuchi N. (2001). A class of general algorithm for multi-scale analyses of heterogeneous media. Comput. Methods Appl. Mech. Eng. 190:5427–5464 · Zbl 1001.74095 · doi:10.1016/S0045-7825(01)00179-7
[38] Terada K., Ito T., Kikuchi N. (1998). Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng. 153:223–257 · Zbl 0926.74097 · doi:10.1016/S0045-7825(97)00071-6
[39] Terada K., Hori M., Kyoya T., Kikuchi N. (2000). Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37:2285–2311 · Zbl 0991.74056 · doi:10.1016/S0020-7683(98)00341-2
[40] Tada S., Tarbell J.M. (2000). Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H1589–H1597
[41] Takano N., Ohnishi Y., Zako M., Nishiyabu K. (2000). The formulation of homogenization method applied to large deformation problem for composite materials. Int. J. Solids Struct. 37:6517–6535 · Zbl 0969.74053 · doi:10.1016/S0020-7683(99)00284-X
[42] Takano N., Zako M., Okazaki T., Terada K. (2002). Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory. Compos. Sci. Technol. 62:1347–1356 · doi:10.1016/S0266-3538(02)00076-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.