×

Asymptotic consensus of dynamical points in a strict max-convex space and its applications. (English) Zbl 1452.93035

Summary: This paper explores the design problem of consensus algorithms in a class of convex geometric metric spaces. Using the techniques of convex analysis and possibility analysis, a simple assumption for designing consensus algorithms in a strict max-convex space is proposed, under which all dynamical points in a system achieve consensus asymptotically if and only if their associated interaction graph uniformly contains at least one directed spanning tree. Three efficient consensus algorithms under the assumption are presented, and their applications are demonstrated together with efficiency studies.

MSC:

93D50 Consensus
93C25 Control/observation systems in abstract spaces
52A99 General convexity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Bauso, L. Giarré, and R. Pesenti, Non-linear protocols for optimal distributed consensus in network of dynamic agents, Systems Control Lett., 55 (2006), pp. 918-928. · Zbl 1111.68009
[2] L. J. Billera, S. P. Holmes, and K. Vogtmann, Geometry of the space of phylogenetic trees, Adv. Appl. Math., 27 (2001), pp. 733-767. · Zbl 0995.92035
[3] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, New York, 1999. · Zbl 0988.53001
[4] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016
[5] S. Chen, P. Shi, C.-C. Lim, and Z. Lu, A consensus algorithm in \(CAT(0)\) space and its application to distributed fusion of phylogenetic trees, J. Math. Anal. Appl., 459 (2018), pp. 1149-1159. · Zbl 1423.68580
[6] S. Chen, P. Shi, W. Zhang, and L. Zhao, Finite-time consensus on strongly convex balls of Riemannian manifolds with switching directed communication topologies, J. Math. Anal. Appl., 409 (2014), pp. 663-675. · Zbl 1305.93012
[7] L. Cheng, Y. Wang, W. Ren, Z.-G. Hou, and M. Tan, On convergence rate of leader-following consensus of linear multi-agent systems with communication noises, IEEE Trans. Automat. Control, 61 (2016), pp. 3586-3592. · Zbl 1359.93172
[8] J. Cortés, Finite-time convergent gradient flows with application to network consensus, Automatica J. IFAC, 42 (2006), pp. 1993-2000. · Zbl 1261.93058
[9] P. Grohs, Wolfowitz’s theorem and consensus algorithms in Hadamard spaces, Proc. Amer. Math. Soc., 143 (2015), pp. 4403-4414. · Zbl 1323.53039
[10] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control, 48 (2003), pp. 988-1001. · Zbl 1364.93514
[11] F. Jiang and L. Wang, Finite-time information consensus for multi-agent systems with fixed and switching topologies, Phys. D, 239 (2009), pp. 1550-1560. · Zbl 1170.93304
[12] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var., 49 (2014), pp. 1359-1378. · Zbl 1291.53047
[13] C. Li and Z. Qu, Distributed finite-time consensus of nonlinear systems under switching topologies, Automatica J. IFAC, 50 (2014), pp. 1626-1631. · Zbl 1296.93008
[14] Z. Lin, B. Francis, and M. Maggiore, State agreement for continuous-time coupled nonlinear systems, SIAM J. Control Optim., 46 (2007), pp. 288-307. · Zbl 1141.93032
[15] Y. Liu, Y. Zhao, W. Ren, and G. Chen, Appointed-time consensus: Accurate and practical designs, Automatica J. IFAC, 89 (2018), pp. 425-429. · Zbl 1388.93010
[16] I. Matei and J. S. Baras, The asymptotic consensus problem on convex metric spaces, IEEE Trans. Auto. Control, 60 (2015), pp. 907-921. · Zbl 1360.93046
[17] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735-747. · Zbl 1079.47021
[18] I. Molchanov, Theory of Random Sets, Springer, New York, 2005. · Zbl 1109.60001
[19] L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Automat. Control, 50 (2005), pp. 169-182. · Zbl 1365.93268
[20] G. L. Naber, The Geometry of Minkowski Spacetime, Springer, New York, 2012. · Zbl 1241.83005
[21] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math., 147 (2011), pp. 1546-1572. · Zbl 1267.20057
[22] J. X. D. C. Neto, O. P. Ferreira, L. R. L. Pérez, and S. Z. Németh, Convex- and monotone-transformable mathematical programming problems and a proximal-like point method, J. Global Optim., 35 (2006), pp. 53-69. · Zbl 1104.90035
[23] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata, 125 (2007), pp. 225-250. · Zbl 1140.52001
[24] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control, 49 (2004), pp. 1520-1533. · Zbl 1365.93301
[25] M. Owen and J. S. Proven, A fast algorithm for computing geodesic distances in tree spaces, IEEE/ACM Trans. Comput. Biol. Bioinform., 8 (2011), pp. 2-13.
[26] W. Ren and R. W. Beard, Consensus seeking in multi agent systems under dynamically changing interaction topologies, IEEE Trans. Automat. Control, 50 (2005), pp. 655-661. · Zbl 1365.93302
[27] L. D. S. Sacramento, B. O. Nez, and J. M. Arauj́o, Communication delay robutness improvement of linear consensus protocol in undirected graph inspired by deformed algebra, Internat. J. Innov. Comput. Inform. Control, 13 (2017), pp. 1-10.
[28] A. Sarlette and C. Lageman, Synchronization with partial state coupling on \(SO(n)\), SIAM J. Control Optim., 50 (2012), pp. 3242-3268. · Zbl 1258.93013
[29] G. Shi, W. Xia, and K. H. Johansson, Convergence of max-min consensus algorithms, Automatica J. IFAC, 62 (2015), pp. 11-17. · Zbl 1329.93014
[30] R. Tron, B. Afsari, and R. Vidal, Riemannian consensus for manifolds with bounded curvature, IEEE Trans. Automat. Control, 58 (2013), pp. 921-934. · Zbl 1369.93452
[31] S. Yoo, Distributed consensus tracking of a class of asynchronously switched nonlinear multi-agent systems, Automatica J. IFAC, 87 (2018), pp. 421-427. · Zbl 1378.93015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.