×

zbMATH — the first resource for mathematics

Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions. (English) Zbl 0344.46096
MSC:
46G10 Vector-valued measures and integration
46A08 Barrelled spaces, bornological spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] G. BENNETT, N.J. KALTON, Inclusion theorems for K-spaces, Canad. J. Math., 25 (1973), 511-524. · Zbl 0272.46009
[2] J.H.E. COHN, On the value of determinants, Proc. Amer. Math. Soc., 14 (1963), 581-588. · Zbl 0129.26702
[3] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration, I, II and III, Bull. Acad. Polon. Sci., 20 (1972), 269-276, 277-286, 439-445. · Zbl 0249.28006
[4] L. DREWNOWSKI, Equivalence of brooks-jewett, Vitali-Hahn-Saks and Nikodym theorems, Bull. Acad. Polon. Sci., 20 (1972), 725-731. · Zbl 0243.28011
[5] L. DREWNOWSKI, Uniform boundedness principle for finitely additive vector measures, Bull. Acad. Polon. Sci., 21 (1973), 115-118. · Zbl 0248.28007
[6] L. DREWNOWSKI, On the Orlicz-Pettis type theorems of kalton, Bull. Acad. Polon. Sci., 21 (1973), 515-518. · Zbl 0263.22003
[7] L. DREWNOWSKI, I. LABUDA, Sur quelques théorèmes du type d’Orlicz-Pettis II, Bull. Acad. Polon. Sci., 21 (1973), 119-126. · Zbl 0256.28010
[8] W. FISCHER, U. SCHOLER, The range of vector measures into Orlicz spaces, Studia Math., 59 (1976), 53-61. · Zbl 0417.46050
[9] W. FISCHER, U. SCHOLER, Sur la bornitude d’une mesure vectorielle, C.R. Acad. Sci,., Paris, 282 A (1976), 519-522. · Zbl 0324.46005
[10] A. GROTHENDIECK, Espaces vectoriels topologiques, Instituto de Matematica Pura e Aplicada, Universidade de Sao Paulo, 3d ed., Sao Paulo, 1964. · Zbl 0316.46001
[11] T. HUSAIN, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. · Zbl 0124.06301
[12] S.O. IYAHEN, On certain classes of linear topological spaces, Proc. London Math. Soc., 18 (1968), 285-307. · Zbl 0165.14203
[13] N.J. KALTON, Topologies on Riesz groups and applications to measure theory, Proc. London Math. Soc., (3) 28 (1974), 253-273. · Zbl 0276.28014
[14] I. LABUDA, Sur quelques généralisations des théorèmes de Nikodym et de vitali-Hahn-Saks, Bull. Acad. Polon. Sci., 20 (1972), 447-456. · Zbl 0242.28003
[15] I. LABUDA, Sur quelques théorèmes du type d’Orlicz-Pettis I, Bull. Acad. Polon. Sci., 21 (1973), 127-132. · Zbl 0256.28009
[16] I. LABUDA, Ensembles convexes dans LES espaces d’Orlicz, C.R. Acad. Sci., Paris, 281 (1975), 443-445. · Zbl 0309.46027
[17] W. ROBERTSON, Completions of topological vector spaces, Proc. London Math. Soc., (3) 8 (1958), 242-257. · Zbl 0081.32604
[18] S. ROLEWICZ, Metric linear spaces, Monografie Matematyczne 56, PWN, Warsaw 1972. · Zbl 0226.46001
[19] S. ROLEWICZC. RYLL-NARDZEWSKI, On unconditional convergence in linear metric spaces, Coll. Math., 17 (1967), 327-331. · Zbl 0166.10401
[20] G.L. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. · Zbl 0189.44902
[21] E. THOMAS, The Lebesgue-Nikodym theorem for vector valued Radon measures, Mem. Amer. Math. Soc., 139 (1974). · Zbl 0282.28004
[22] Ph. TURPIN, Convexités dans LES espaces vectoriels topologiques généraux, Dissertationes Math., 131, PWN, Warsaw, 1975. · Zbl 0331.46001
[23] Ph. TURPIN, Conditions de bornitude et espaces de fonctions mesurables, Studia Math., 56 (1975), 69-91. · Zbl 0335.46021
[24] Ph. TURPIN, Une mesure vectorielle non bornée, C.R. Acad. Sci., Paris, 280 A (1975), 509-511. · Zbl 0295.46070
[25] Ph. TURPIN, Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Colloque sur l’Intégration vectorielle et multivoque, Caen 22 et 23 mai 1975. · Zbl 0364.46032
[26] L. WAELBROECK, Topological vector spaces and algebras, Lecture Notes in Mathematics, 230, Springer, Berlin, 1971. · Zbl 0225.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.