×

A turning bands method for simulating isotropic Gaussian random fields on the sphere. (English) Zbl 1406.60077

Summary: We introduce a novel approach to simulate Gaussian random fields defined over spheres of \(\mathbb{R}^3\). Through continuation we embed the process on the sphere in a nonstationary random field of \(\mathbb{R}^3\) to use a turning bands method. We also discuss the approximation accuracy.

MSC:

60G60 Random fields
60G15 Gaussian processes
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

TBSIM; smerfs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chilès, J.; Delfiner, P., Geostatistics: Modeling Spatial Uncertainty (2012), Wiley, New York · Zbl 1256.86007
[2] Creasey, P. E.; Lang, A., Fast generation of isotropic gaussian random fields on the sphere, Monte Carlo Methods Appl., 24, 1-11 (2018) · Zbl 1386.60180
[3] Dai, F.; Xu, Y., Approximation Theory and Harmonic Analysis on Spheres and Balls (2013), Springer · Zbl 1275.42001
[4] Daley, D. J.; Porcu, E., Dimension walks and Schoenberg Spectral Measures, Proc. Amer. Math. Soc., 141, 1813-1824 (2013) · Zbl 1343.62085
[6] Emery, X.; Arroyo, D.; Porcu, E., An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields, Stoch. Environ. Res. Risk Assess., 30, 7, 1863-1873 (2016)
[7] Emery, X.; Lantuéjoul, C., TBSIM: A computer program for conditional simulation of three-dimensional gaussian random fields via the turning bands method, Comput. Geosci., 32, 10, 1615-1628 (2006)
[8] Fan, M.; Paul, D.; Lee, T. C.M.; Matsuo, T., A multi-resolution model for non-Gaussian random fields on a sphere with application to ionospheric electrostatic potentials, Ann. Appl. Stat., 12, 1, 459-489 (2018) · Zbl 1393.62039
[9] Gradshteyn, I. S.; Ryzhik, I. M., Tables of Integrals, Series, and Products (2007), Academic Press, Amsterdam · Zbl 1208.65001
[10] Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T., Spectral turning bands for efficient gaussian random fields generation on GPUs and accelerators, Concurr. Comput.: Pract. Exper., 27, 16, 4122-4136 (2015)
[11] Jeong, J.; Jun, M.; Genton, M., Covariance models for global spatial statistics, Statist. Sci., 32, 501-513 (2017) · Zbl 1381.62091
[12] Lang, A.; Schwab, C., Isotropic gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab., 25, 3047-3094 (2015) · Zbl 1328.60126
[13] Lantuéjoul, C., Geostatistical Simulation: Models and Algorithms (2002), Springer, Berlin · Zbl 0990.86007
[14] Le Gia, Q., Sloan, I., Womersley, R., Wang, Y., 2018. Sparse isotropic regularization for spherical harmonic representations of random fields on the sphere. Arxiv, arXiv:1801.03212; Le Gia, Q., Sloan, I., Womersley, R., Wang, Y., 2018. Sparse isotropic regularization for spherical harmonic representations of random fields on the sphere. Arxiv, arXiv:1801.03212
[15] Marinucci, D.; Peccati, G., Random fields on the Sphere, Representation, Limit Theorems and Cosmological Applications (2011), Cambridge, New York · Zbl 1260.60004
[16] Matheron, G., The intrinsic random functions and their applications, Adv. Appl. Probab., 5, 2, 439-468 (1973) · Zbl 0324.60036
[17] Porcu, E.; Alegría, A.; Furrer, R., Modeling temporally evolving and spatially globally dependent data, Internat. Statist. Rev. (2018), First published: 24 May 2018, http://dx.doi.org/10.1111/insr.12266
[18] Schoenberg, I. J., Positive definite functions on spheres, Duke Math. J., 9, 96-108 (1942) · Zbl 0063.06808
[19] Shinozuka, M., Simulation of multivariate and multidimensional random processes, J. Acoust. Soc. Am., 49, 1B, 357-367 (1971)
[20] Shinozuka, M.; Jan, C., Digital simulation of random processes and its applications, J. Sound Vib., 25, 1, 111-128 (1972)
[21] Yadrenko, A. M., Spectral Theory of Random Fields (1983), Optimization Software, New York · Zbl 0539.60048
[22] Yaglom, A.M., 1961. Second-order homogeneous Random Fields. In: Proc. 4th Berkeley Symp. Math. Stat. Prob. Vol. 2, pp. 593-622.; Yaglom, A.M., 1961. Second-order homogeneous Random Fields. In: Proc. 4th Berkeley Symp. Math. Stat. Prob. Vol. 2, pp. 593-622.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.