×

Distributionally robust design for redundancy allocation. (English) Zbl 1451.90053

Summary: In this paper, we consider a redundancy allocation problem for a series parallel system with uncertain component lifetimes that minimizes system costs while safeguarding system reliability over a given threshold level. We consider mixed redundancy strategies of cold standby and active redundancy with multiple types of components. We address lifetime uncertainty in the framework of distributionally robust optimization. In particular, we assume the probability distributions of the component lifetimes are not exactly known with only limited distributional information (e.g., mean, dispersion, and support) being available. We protect the worst-case system reliability constraint over all the possible component lifetime distributions that are consistent with the given distributional characteristics. The proposed modeling framework enjoys computationally attractive structures. The evaluation of the worst-case system reliability in our redundancy allocation problem can be transformed into a linear program, and the resulting overall redundancy allocation optimization problem can be cast as a mixed integer linear program that does not induce any additional integer variables (other than original allocation variables). In addition, the extreme joint distribution of component lifetimes can be efficiently recovered by solving a linear program. Our modeling framework can also be extended to incorporate the startup failures and common-cause failures for cold standbys and active parallels, respectively, to cater to more computationally complex settings. Finally, the computational experiments positively demonstrate the performance of the proposed approach in protecting system reliability.
The e-companion is available at https://doi.org/10.1287/ijoc.2019.0907.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
90C17 Robustness in mathematical programming
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ardakan MA, Hamadani AZ (2014) Reliability optimization of series-parallel systems with mixed redundancy strategy in subsystems. Reliability Engrg. System Safety 130:132-139.Crossref, Google Scholar · doi:10.1016/j.ress.2014.06.001
[2] Ben-Tal A, Brekelmans R, den Hertog D, Vial J-P (2017) Globalized robust optimization for nonlinear uncertain inequalities. INFORMS J. Comput. 29(2):350-366.Link, Google Scholar · Zbl 1371.90092
[3] Bertsimas D, Sim M (2004) The price of robustness. Oper. Res. 52(1):35-53.Link, Google Scholar · Zbl 1165.90565
[4] Bertsimas D, Gupta V, Kallus N (2018) Data-driven robust optimization. Math. Programming 167(2):235-292.Google Scholar · Zbl 1397.90298
[5] Bhunia AK, Sahoo L, Roy D (2010) Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm. Appl. Math. Comput. 216(3):929-939.Google Scholar · Zbl 1189.65125
[6] Cheng Z, Wang X, Tian C, Wang F (2009). Mission reliability simulation of high-speed EMU service braking system. Proc. 8th Internat. Conf. Reliability Maintainability Safety (ICRMS 2009) (IEEE, Chengdu, China), 253-256.Google Scholar
[7] Chern MS (1992) On the computational complexity of reliability redundancy allocation in a series system. Oper. Res. Lett. 11(5):309-315.Crossref, Google Scholar · Zbl 0767.90021 · doi:10.1016/0167-6377(92)90008-Q
[8] Coit DW (2003) Maximization of system reliability with a choice of redundancy strategies. IIE Trans. 35(6):535-543.Crossref, Google Scholar · doi:10.1080/07408170304420
[9] Coit DW, Smith AE (1998) Redundancy allocation to maximize a lower percentile of the system time-to-failure distribution. IEEE Trans. Reliability 47(1):79-87.Crossref, Google Scholar · doi:10.1109/24.690912
[10] Coit DW, Smith AE (2002) Genetic algorithm to maximize a lower-bound for system time-to-failure with uncertain component Weibul parameters. Comput. Indust. Engrg. 41(14):423-440.Crossref, Google Scholar · doi:10.1016/S0360-8352(01)00066-3
[11] Coit DW, Jin T, Wattanapongsakorn N (2004) System optimization with component reliability estimation uncertainty: A multi-criteria approach. IEEE Trans. Reliability 53(3):369-380.Crossref, Google Scholar · doi:10.1109/TR.2004.833312
[12] Elegbede AC, Chu C, Adjallah KH, Yalaoui F (2003) Reliability allocation through cost minimization. IEEE Trans. Reliability 52(1):106-111.Crossref, Google Scholar · doi:10.1109/TR.2002.807242
[13] Elsayed EA (2012) Reliability Engineering, 2nd ed. (John Wiley & Sons, Hoboken, NJ).Google Scholar · Zbl 1250.90002
[14] Feizollahi MJ, Modarres M (2012) The robust deviation redundancy allocation problem with interval component reliabilities. IEEE Trans. Reliability 61(4):957-965.Crossref, Google Scholar · doi:10.1109/TR.2012.2221032
[15] Feizollahi MJ, Ahmed S, Modarres M (2014) The robust redundancy allocation problem in series-parallel systems with budgeted uncertainty. IEEE Trans. Reliability 63(1):239-250.Crossref, Google Scholar · doi:10.1109/TR.2014.2299191
[16] Feizollahi MJ, Soltan R, Feyzollahi H (2015) The robust cold standby redundancy allocation in series-parallel systems with budgeted uncertainty. IEEE Trans. Reliability 64(2):799-806.Crossref, Google Scholar · doi:10.1109/TR.2015.2416214
[17] Govindan K, Jafarian A, Azbari ME, Choi TM (2017) Optimal bi-objective redundancy allocation for systems reliability and risk management. IEEE Trans. Cybernetics 46(8):1735-1748.Crossref, Google Scholar · doi:10.1109/TCYB.2014.2382666
[18] Hanasusanto GA, Roitch V, Kuhn D, Wiesemann W (2017) Ambiguous joint chance constraints under mean and dispersion information. Oper. Res. 65(3):715-767.Link, Google Scholar · Zbl 1387.90271
[19] Hasegawa I, Uchida S (1999) Braking systems. Japan Railway Transport Rev. 20:52-59.Google Scholar
[20] Hooker JN (2002) Logic, optimization, and constraint programming. INFORMS J. Comput. 14(4):295-321.Link, Google Scholar · Zbl 1238.90002
[21] Kreuser A, Johanson G (2017) Recent insights from the international common-cause failure data exchange project. Nuclear Engrg. Tech. 49(2):327-334.Crossref, Google Scholar · doi:10.1016/j.net.2017.01.012
[22] Kuo W, Wan R (2007) Recent advances in optimal reliability allocation. IEEE Trans. Systems Man Cybernetics—Part A: Systems Humans 37(2):143-156.Crossref, Google Scholar · doi:10.1109/TSMCA.2006.889476
[23] Kuo W, Prasad VR, Tillman FA, Hwang CL (2001) Optimal Reliability Design: Fundamentals and Applications (Cambridge University Press, Cambridge, UK).Google Scholar
[24] Li YF, Ding Y, Zio E (2014) Random fuzzy extension of the universal generating function approach for the reliability assessment of multi-state systems under aleatory and epistemic uncertainties. IEEE Trans. Reliability 63(1):13-25.Crossref, Google Scholar · doi:10.1109/TR.2014.2299031
[25] Li X, Hu X (2008) Some new stochastic comparisons for redundancy allocations in series and parallel systems. Statist. Probab. Lett. 78(18):3388-3394.Crossref, Google Scholar · Zbl 1163.90439 · doi:10.1016/j.spl.2008.07.023
[26] Liao L, Köttig F (2014) Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliability 63(1):191-207.Crossref, Google Scholar · doi:10.1109/TR.2014.2299152
[27] Nemirovski A, Shapiro A (2006) Convex approximations of chance constrained programs. SIAM J. Optim. 17(4):969-996.Crossref, Google Scholar · Zbl 1126.90056 · doi:10.1137/050622328
[28] Ng SY, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118:114-123.Crossref, Google Scholar · doi:10.1016/j.apenergy.2013.12.020
[29] Pecht M (2008) Prognostics and Health Management of Electronics (John Wiley & Sons, Hoboken, NJ).Crossref, Google Scholar · doi:10.1002/9780470385845
[30] Prasad VR, Kuo W, Kim KO (2001) Maximization of a percentile life of a series system through component redundancy allocation. IIE Trans. 33(12):1071-1079.Crossref, Google Scholar · doi:10.1080/07408170108936897
[31] Prékopa A (1998) Bounds on probabilities and expectations using multivariate moments of discrete distributions. Studia Scientiarum Mathematiearum Hungarica 34:349-378.Google Scholar · Zbl 0909.62054
[32] Rausand M, Høyland A (2004) System Reliability Theory: Models, Statistical Methods, and Applications (John Wiley & Sons, Hoboken, NJ).Google Scholar · Zbl 1052.93001
[33] Shapiro A (2001) On duality theory of conic linear problems. Goberna MÁ, López MA, eds. Semi-Infinite Programming (Kluwer Academic Publishers, Boston), 135-165.Crossref, Google Scholar · Zbl 1055.90088 · doi:10.1007/978-1-4757-3403-4_7
[34] Sun MX, Li YF, Zio E (2017) On the optimal redundancy allocation for multi-state series-parallel systems under epistemic uncertainty. Reliability Engrg. System Safety., ePub ahead of print December 5, https://doi.org/10.1016/j.ress.2017.11.025.Google Scholar
[35] Tang S, Yu C, Wang X, Guo X, Si X (2014) Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error. Energies 7(2):520-547.Crossref, Google Scholar · doi:10.3390/en7020520
[36] Tekiner-Mogulkoc H, Coit DW (2011) System reliability optimization considering uncertainty: Minimization of the coefficient of variation for series-parallel systems. IEEE Trans. Reliability 60(30):667-674.Crossref, Google Scholar · doi:10.1109/TR.2011.2161029
[37] Wierman TE, Rasmuson DM, Mosleh A (2007) Common-Cause Failure Database and Analysis System: Event Data Collection, Classification, and Coding (NUREG/CR-6268) (U.S. Nuclear Regulatory Commission, Washington, DC).Google Scholar
[38] Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex optimization. Oper. Res. 62(6):1358-1376.Link, Google Scholar · Zbl 1327.90158
[39] Xie W, Ahmed S (2018) Distributionally robust chance constrained optimal power flow with renewables: A conic reformulation. IEEE Trans. Power Systems 33(2):1860-1867.Crossref, Google Scholar · doi:10.1109/TPWRS.2017.2725581
[40] Yalaoui A, Chatelet E, Chu C (2005) A new dynamic programming method for reliability redundancy allocation in a parallel-series system. IEEE Trans. Reliability 54(2):254-261.Crossref, Google Scholar · doi:10.1109/TR.2005.847270
[41] Yanikoglu I, den Hertog D (2013) Safe approximations of ambiguous chance constraints using historical data. INFORMS J. Comput. 25(4):666-681.Link, Google Scholar
[42] Zaretalab A, Hajipour V, Sharifi M, Shahriari MR (2015) A knowledge-based archive multi-objective simulated annealing algorithm to optimize series-parallel system with choice of redundancy strategies. Comput. Indust. Engrg. 80:33-44.Crossref, Google Scholar · doi:10.1016/j.cie.2014.11.008
[43] Zhao P, Chan PS, Ng HKT (2011) Optimal allocation of redundancies in series systems. Eur. J. Oper. Res. 220(3):673-683.Crossref, Google Scholar · Zbl 1253.90099 · doi:10.1016/j.ejor.2012.02.024
[44] Zhao R, Liu B (2003) Stochastic programming models for general redundancy-optimization problems. IEEE Trans. Reliability 52(2):181-191.Crossref, Google Scholar · doi:10.1109/TR.2003.808744
[45] Zymler S, Kuhn D, Rustem B (2013) Distributionally robust joint chance constraints with second-order moment information. Math. Programming 137(1-2):167-198.Crossref, Google Scholar · Zbl 1286.90103 · doi:10.1007/s10107-011-0494-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.