Scotogenic R\(\nu\)MDM at three-loop level. (English) Zbl 1330.81227

Summary: We propose a model in which the radiative neutrino \((\mathrm{R}\nu)\) masses are induced by fermion quintuplet and scalar septuplet fields from the minimal-dark-matter (MDM) setup. In conjunction with the 2HDM fields, on top of which our model is built, these hypercharge zero fields and additional scalar quintuplet lead to an accidental DM-protecting \(Z_2\) symmetry and establish the R\(\nu\)MDM model at the three-loop level. We assess the potential for discovery of quintuplet fermions on present and future \(pp\) colliders.


81V25 Other elementary particle theory in quantum theory
81V15 Weak interaction in quantum theory
Full Text: DOI arXiv


[1] Aad, G., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716, 1, (2012)
[2] Chatrchyan, S., Observation of a new boson at a mass of 125 gev with the CMS experiment at the LHC, Phys. Lett. B, 716, 30, (2012)
[3] Olive, K. A., Review of particle physics, Chin. Phys. C, 38, 090001, (2014)
[4] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D, 73, 077301, (2006)
[5] Ma, E.; Picek, I.; Radovčić, B., New scotogenic model of neutrino mass with \(U(1)_D\) gauge interaction, Phys. Lett. B, 726, 744, (2013)
[6] Brdar, V.; Picek, I.; Radovčić, B., Radiative neutrino mass with scotogenic scalar triplet, Phys. Lett. B, 728, 198, (2014) · Zbl 1377.81248
[7] Cata, O.; Ibarra, A., Dark matter stability without new symmetries, Phys. Rev. D, 90, 063509, (2014)
[8] Cirelli, M.; Fornengo, N.; Strumia, A.; Cirelli, M.; Strumia, A., Minimal dark matter: model and results, Nucl. Phys. B, Phys. Rev. D, 80, 071702, (2009)
[9] Cirelli, M.; Sala, F.; Taoso, M.; Cirelli, M.; Sala, F.; Taoso, M., Wino-like minimal dark matter and future colliders, J. High Energy Phys., J. High Energy Phys., 1501, 041, (2015), (Erratum)
[10] Cai, Y.; He, X.-G.; Ramsey-Musolf, M.; Tsai, L.-H., RνMDM and lepton flavour violation, J. High Energy Phys., 1112, 054, (2011) · Zbl 1306.81369
[11] Kumerički, K.; Picek, I.; Radovčić, B., Critique of fermionic RνMDM and its scalar variants, J. High Energy Phys., 1207, 039, (2012)
[12] Krauss, L. M.; Nasri, S.; Trodden, M., A model for neutrino masses and dark matter, Phys. Rev. D, 67, 085002, (2003)
[13] Hatanaka, H.; Nishiwaki, K.; Okada, H.; Orikasa, Y., A three-loop neutrino model with global \(U(1)\) symmetry, Nucl. Phys. B, 894, 268, (2015) · Zbl 1328.81237
[14] Jin, L. G.; Tang, R.; Zhang, F., A three-loop radiative neutrino mass model with dark matter, Phys. Lett. B, 741, 163, (2015)
[15] Krauss, L. M., What is the role of neutrinos in shaping the universe?
[16] Ahriche, A.; Chen, C.-S.; McDonald, K. L.; Nasri, S., A three-loop model of neutrino mass with dark matter, Phys. Rev. D, 90, 015024, (2014)
[17] Ahriche, A.; McDonald, K. L.; Nasri, S., A model of radiative neutrino mass: with or without dark matter, J. High Energy Phys., 1410, 167, (2014)
[18] Chen, C.-S.; McDonald, K. L.; Nasri, S., A class of three-loop models with neutrino mass and dark matter, Phys. Lett. B, 734, 388, (2014)
[19] Aoki, M.; Kanemura, S.; Seto, O., Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett., 102, 051805, (2009)
[20] Aoki, M.; Kanemura, S.; Seto, O., Model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D, 80, 033007, (2009)
[21] Branco, G. C.; Ferreira, P. M.; Lavoura, L.; Rebelo, M. N.; Sher, M.; Silva, J. P., Theory and phenomenology of two-Higgs-doublet models, Phys. Rep., 516, 1, (2012)
[22] Chakrabarty, N.; Dey, U. K.; Mukhopadhyaya, B., High-scale validity of a two-Higgs doublet scenario: a study including LHC data, J. High Energy Phys., 1412, 166, (2014)
[23] Kanemura, S.; Tsumura, K.; Yagyu, K.; Yokoya, H., Fingerprinting nonminimal Higgs sectors, Phys. Rev. D, 90, 7, 075001, (2014)
[24] Passarino, G.; Veltman, M. J.G., One loop corrections for E+ E- annihilation into mu+ mu- in the Weinberg model, Nucl. Phys. B, 160, 151, (1979)
[25] Franceschini, R.; Hambye, T.; Strumia, A., Type-III see-saw at LHC, Phys. Rev. D, 78, 033002, (2008)
[26] Kumerički, K.; Picek, I.; Radovčić, B., TeV-scale seesaw with quintuplet fermions, Phys. Rev. D, 86, 013006, (2012)
[27] Law, S. S.C.; McDonald, K. L., Generalized inverse seesaw mechanisms, Phys. Rev. D, 87, 113003, (2013)
[28] Boucenna, M. S.; Lineros, R. A.; Valle, J. W.F., Planck-scale effects on WIMP dark matter, Front. Phys., 1, 34, (2013)
[29] Boucenna, S. M.; Morisi, S.; Valle, J. W.F., The low-scale approach to neutrino masses, Adv. High Energy Phys., 2014, 831598, (2014)
[30] Audren, B.; Lesgourgues, J.; Mangano, G.; Serpico, P. D.; Tram, T., Strongest model-independent bound on the lifetime of dark matter, J. Cosmol. Astropart. Phys., 1412, 12, 028, (2014)
[31] Yu, Y.; Yue, C. X.; Yang, S., The signatures of the quintuplet leptons at the LHC
[32] Aoki, M.; Kanemura, S., Probing the Majorana nature of TeV-scale radiative seesaw models at collider experiments, Phys. Lett. B, 689, 28, (2010)
[33] Logan, H. E.; MacLennan, D., Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D, 79, 115022, (2009)
[34] Kanemura, S.; Yokoya, H.; Zheng, Y. J., Complementarity in direct searches for additional Higgs bosons at the LHC and the international linear collider, Nucl. Phys. B, 886, 524, (2014)
[35] Kajiyama, Y.; Okada, H.; Yagyu, K., Electron/muon specific two Higgs doublet model, Nucl. Phys. B, 887, 358, (2014) · Zbl 1325.81183
[36] Kanemura, S., Higgs physics as a proble of new physics, Nuovo Cimento C, 037, 02, 113, (2014)
[37] Biswas, A.; Lahiri, A., Masses of physical scalars in two Higgs doublet models
[38] Kajiyama, Y.; Okada, H.; Yagyu, K., \(T_7\) flavor model in three loop seesaw and Higgs phenomenology, J. High Energy Phys., 1310, 196, (2013)
[39] Hashemi, M.; Bakhshalizadeh, H., Off-diagonal Yukawa couplings in the s-channel charged Higgs production at LHC, Phys. Lett. B, 741, 145, (2015)
[40] Enberg, R.; Klemm, W.; Moretti, S.; Munir, S.; Wouda, G., Charged Higgs boson in the \(W^\pm\) Higgs channel at the large hadron collider, Nucl. Phys. B, 893, 420, (2015) · Zbl 1348.81461
[41] Aoki, M.; Kanemura, S.; Yagyu, K., Triviality and vacuum stability bounds in the three-loop neutrino mass model, Phys. Rev. D, 83, 075016, (2011)
[42] Dev, P. S.B.; Pilaftsis, A., Minimal radiative neutrino mass mechanism for inverse seesaw models, Phys. Rev. D, 86, 113001, (2012)
[43] Queiroz, F. S.; Sinha, K.; Strumia, A., Leptoquarks, dark matter, and anomalous LHC events, Phys. Rev. D, 91, 3, 035006, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.