×

Minimal degree \(H(\mathrm {curl})\) and \(H(\mathrm {div})\) conforming finite elements on polytopal meshes. (English) Zbl 1364.65244

Summary: We construct \( H(\mathrm {curl})\) and \( H(\mathrm {div})\) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing \( H(\mathrm {curl})\)- \( H(\mathrm {div})\) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nédélec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnold, Douglas N.; Boffi, Daniele; Falk, Richard S., Quadrilateral \(H({\rm div})\) finite elements, SIAM J. Numer. Anal., 42, 6, 2429-2451 (electronic) (2005) · Zbl 1086.65105 · doi:10.1137/S0036142903431924
[2] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[3] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Differential complexes and stability of finite element methods. I. The de Rham complex. Compatible Spatial Discretizations, IMA Vol. Math. Appl. 142, 24-46 (2006), Springer, New York · Zbl 1119.65398 · doi:10.1007/0-387-38034-5
[4] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1660-1672 (2009) · Zbl 1227.65091 · doi:10.1016/j.cma.2008.12.017
[5] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47, 2, 281-354 (2010) · Zbl 1207.65134 · doi:10.1090/S0273-0979-10-01278-4
[6] Berm{\'u}dez, Alfredo; Gamallo, Pablo; Nogueiras, Mar{\'{\i }}a R.; Rodr{\'{\i }}guez, Rodolfo, Approximation properties of lowest-order hexahedral Raviart-Thomas finite elements, C. R. Math. Acad. Sci. Paris, 340, 9, 687-692 (2005) · Zbl 1071.65148 · doi:10.1016/j.crma.2005.03.023
[7] Bossavit88 A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proceedings A 135 (1988), 493-500.
[8] Bossavit, A., A uniform rationale for Whitney forms on various supporting shapes, Math. Comput. Simulation, 80, 8, 1567-1577 (2010) · Zbl 1196.78024 · doi:10.1016/j.matcom.2008.11.005
[9] Brezzi, Franco; Fortin, Michel, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, x+350 pp. (1991), Springer-Verlag, New York · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[10] Brezzi, Franco; Lipnikov, Konstantin; Shashkov, Mikhail, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (electronic) (2005) · Zbl 1108.65102 · doi:10.1137/040613950
[11] Christiansen, Snorre H., A construction of spaces of compatible differential forms on cellular complexes, Math. Models Methods Appl. Sci., 18, 5, 739-757 (2008) · Zbl 1153.65005 · doi:10.1142/S021820250800284X
[12] Cl{\'e}ment, Ph., Approximation by finite element functions using local regularization, Rev. Fran\c caise Automat. Informat. Recherche Op\'erationnelle S\'er. RAIRO Analyse Num\'erique, 9, R-2, 77-84 (1975) · Zbl 0368.65008
[13] Du, Qiang; Faber, Vance; Gunzburger, Max, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev., 41, 4, 637-676 (1999) · Zbl 0983.65021 · doi:10.1137/S0036144599352836
[14] Euler06 T. Euler, R. Schuhmann, and T. Weiland, Polygonal finite elements, IEEE Trans. Magnetics 42 (2006), 675-678.
[15] Falk, Richard S.; Gatto, Paolo; Monk, Peter, Hexahedral \(H(\rm div)\) and \(H(\rm curl)\) finite elements, ESAIM Math. Model. Numer. Anal., 45, 1, 115-143 (2011) · Zbl 1270.65066 · doi:10.1051/m2an/2010034
[16] Floater, Michael S., Mean value coordinates, Comput. Aided Geom. Design, 20, 1, 19-27 (2003) · Zbl 1069.65553 · doi:10.1016/S0167-8396(03)00002-5
[17] Floater, Michael S.; K{\'o}s, G{\'e}za; Reimers, Martin, Mean value coordinates in 3D, Comput. Aided Geom. Design, 22, 7, 623-631 (2005) · Zbl 1080.52010 · doi:10.1016/j.cagd.2005.06.004
[18] Floater06 M. S. Floater, K. Hormann, and G. K\'os, A general construction of barycentric coordinates over convex polygons, Advances in Comp. Math. 24 (2006), 311-331. · Zbl 1095.65016
[19] Floater, Michael; Gillette, Andrew; Sukumar, N., Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal., 52, 1, 515-532 (2014) · Zbl 1292.65006 · doi:10.1137/130925712
[20] Floater, Michael S., Generalized barycentric coordinates and applications, Acta Numer., 24, 161-214 (2015) · Zbl 1317.65065 · doi:10.1017/S0962492914000129
[21] Gillette10 A. Gillette and C. Bajaj, A generalization for stable mixed finite elements, Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, 2010, pp. 41-50.
[22] Gillette11 A. Gillette and C. Bajaj, Dual formulations of mixed finite element methods with applications, Comput. Aided Design 43 (2011), 1213-1221.
[23] Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit, Error estimates for generalized barycentric interpolation, Adv. Comput. Math., 37, 3, 417-439 (2012) · Zbl 1259.65013 · doi:10.1007/s10444-011-9218-z
[24] Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit, Construction of scalar and vector finite element families on polygonal and polyhedral meshes, Comput. Methods Appl. Math., 16, 4, 667-683 (2016) · Zbl 1348.65163 · doi:10.1515/cmam-2016-0019
[25] Gradinaru02 V. Gradinaru, Whitney elements on sparse grids, Dissertation, Universit\`“at T\'”ubingen, 2002.
[26] Gradinaru, V.; Hiptmair, R., Whitney elements on pyramids, Electron. Trans. Numer. Anal., 8, 154-168 (1999) · Zbl 0970.65120
[27] Herbin96 R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite Volumes for Complex Applications, Problems and Perspectives, Hermes, 1996, pp. 153-160.
[28] Joshi07 P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki, Harmonic coordinates for character articulation, ACM Transactions on Graphics 26 (2007), Article 71.
[29] Klausen12 R. A. Klausen, A. F. Rasmussen, A. F. Stephansen, Velocity interpolation and streamline tracing on irregular geometries, Comput. Geosci. 16 (2012), 261-276. · Zbl 1254.65035
[30] Kuznetsov, Yuri; Repin, Sergey, Mixed finite element method on polygonal and polyhedral meshes. Numerical Mathematics and Advanced Applications, 615-622 (2004), Springer, Berlin · Zbl 1056.65114
[31] Kuznetsov, Yuri A., Mixed finite element methods on polyhedral meshes for diffusion equations. Partial Differential Equations, Comput. Methods Appl. Sci. 16, 27-41 (2008), Springer, Dordrecht · Zbl 1149.65324 · doi:10.1007/978-1-4020-8758-5\_2
[32] Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail, Mimetic finite difference method, J. Comput. Phys., 257, part B, 1163-1227 (2014) · Zbl 1352.65420 · doi:10.1016/j.jcp.2013.07.031
[33] Manzini, Gianmarco; Russo, Alessandro; Sukumar, N., New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci., 24, 8, 1665-1699 (2014) · Zbl 1291.65322 · doi:10.1142/S0218202514400065
[34] Martin08 S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross, Polyhedral finite elements using harmonic basis functions, Computer Graphics Forum 27(5) [Proceedings SGP], 2008.
[35] Mu, Lin; Wang, Xiaoshen; Wang, Yanqiu, Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization, Numer. Methods Partial Differential Equations, 31, 1, 308-326 (2015) · Zbl 1338.65250 · doi:10.1002/num.21905
[36] N{\'e}d{\'e}lec, J.-C., Mixed finite elements in \({\bf R}^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[37] N{\'e}d{\'e}lec, J.-C., A new family of mixed finite elements in \({\bf R}^3\), Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[38] Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit, Interpolation error estimates for mean value coordinates over convex polygons, Adv. Comput. Math., 39, 2, 327-347 (2013) · Zbl 1275.41005 · doi:10.1007/s10444-012-9282-z
[39] Sibson, Robin, A vector identity for the Dirichlet tessellation, Math. Proc. Cambridge Philos. Soc., 87, 1, 151-155 (1980) · Zbl 0466.52010 · doi:10.1017/S0305004100056589
[40] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 12, 2045-2066 (2004) · Zbl 1073.65563 · doi:10.1002/nme.1141
[41] Sukumar, N.; Malsch, E. A., Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Engrg., 13, 1, 129-163 (2006) · Zbl 1101.65108 · doi:10.1007/BF02905933
[42] Talischi, Cameron; Paulino, Glaucio H.; Le, Chau H., Honeycomb Wachspress finite elements for structural topology optimization, Struct. Multidiscip. Optim., 37, 6, 569-583 (2009) · Zbl 1274.74452 · doi:10.1007/s00158-008-0261-4
[43] Talischi10 C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm, International Journal for Numerical Methods in Engineering 82 (2010), 671-698. · Zbl 1188.74072
[44] Beir{\~a}o da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[45] Wachspress, Eugene L., A Rational Finite Element Basis, Mathematics in Science and Engineering 114, xiii+331 pp. (1975), Academic Press, Inc. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0322.65001
[46] Wachspress, Eugene L., Barycentric coordinates for polytopes, Comput. Math. Appl., 61, 11, 3319-3321 (2011) · Zbl 1222.65127 · doi:10.1016/j.camwa.2011.04.032
[47] Wang, Junping; Ye, Xiu, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83, 289, 2101-2126 (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[48] Warren, Joe, Barycentric coordinates for convex polytopes, Adv. Comput. Math., 6, 2, 97-108 (1997) (1996) · Zbl 0873.52013 · doi:10.1007/BF02127699
[49] Warren, Joe, On the uniqueness of barycentric coordinates. Topics in Algebraic Geometry and Geometric Modeling, Contemp. Math. 334, 93-99 (2003), Amer. Math. Soc., Providence, RI · Zbl 1043.52009 · doi:10.1090/conm/334/05977
[50] Whitney, Hassler, Geometric Integration Theory, xv+387 pp. (1957), Princeton University Press, Princeton, N. J. · Zbl 0083.28204
[51] Wicke07 M. Wicke, M. Botsch and M. Gross, A finite element method on convex polyhedra, Computer Graphics Forum 26(3), Proceedings Eurographics, 2007, pp. 255-364. \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.