×

Similarity analysis of MHD flow field and heat transfer of a second grade convection flow over an unsteady stretching sheet. (English) Zbl 1379.35251

Summary: Unsteady magnetohydrodynamic (MHD) flow of a second grade fluid over a stretching sheet is a focus of this steady. Surface tension is considered to be varies linearly with temperature. The stretching velocity is defined in [I.-C. Liu and H. I. Andersson, “Heat transfer in a liquid film on an unsteady stretching sheet”, Int. J. Therm. Sci. 47, No. 6, 766–772 (2008; doi:10.1016/j.ijthermalsci.2007.06.001)]. Similarity transformation reported by Z. Abbas et al. [Math. Comput. Modelling 48, No. 3–4, 518–526 (2008; Zbl 1145.76317)] are used to develop nonlinear system of differential equations coupled in velocity and temperature fields. The system is solved by the homotopy-analysis method (HAM), while the effects of different parameters such as the unsteadiness parameter \(S\), film thickness, Hartmann number \(Ma\), Prandtl number \(Pr\), Thermocapillary number \(M\), heat flux \(-\theta'(0)\), surface skin-friction coefficient \(f''(0)\), free surface temperature \(\theta(1)\) for flow field, and heat transfer are studied in this article.

MSC:

35Q35 PDEs in connection with fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
76A20 Thin fluid films
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Citations:

Zbl 1145.76317
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, IC, Andersson, HI: Heat transfer in a liquid film on an unsteady stretching sheet. Int. J. Therm. Sci. 47(6), 766-772 (2008) · doi:10.1016/j.ijthermalsci.2007.06.001
[2] Abbas, Z, Hayat, T, Sajid, M, Asghar, S: Unsteady flow of a second grade fluid film over an unsteady stretching sheet. Math. Comput. Model. 48, 518-526 (2008) · Zbl 1145.76317 · doi:10.1016/j.mcm.2007.09.015
[3] Sakiadis, BC: Boundary layer behavior on continuous solid surface I: boundary layer equations for two dimensional and axisymmetric flow. AIChE J. 7, 26-28 (1961) · doi:10.1002/aic.690070108
[4] Sakiadis, BC: Boundary layer behaviour on continuous solid surface II: boundary layer on a continuous flat surface. AIChE J. 7, 221-225 (1961) · doi:10.1002/aic.690070211
[5] Crane, LJ: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645-647 (1970) · doi:10.1007/BF01587695
[6] Wang, CY: Liquid film on an unsteady stretching sheet. Q. Appl. Math. 48, 601-610 (1990) · Zbl 0714.76036 · doi:10.1090/qam/1079908
[7] Lai, FC, Kulacki, FA: The effect of variable viscosity on convective heat and mass transfer along a vertical surface in saturated porous media. Int. J. Heat Mass Transf. 33, 1028-1031 (1991) · doi:10.1016/0017-9310(90)90084-8
[8] Andersson, HI, Aarseth, JB, Dandapat, BS: Heat transfer in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transf. 43, 69-74 (2000) · Zbl 1042.76507 · doi:10.1016/S0017-9310(99)00123-4
[9] Liao, SJ: Beyond Perturbation: Introduction to Homotopy Analysis Method, pp. 17-18. Chapman & Hall, Boca Raton (2004) · Zbl 1051.76001
[10] Wang, C: Analytic solutions for a liquid thin film on an unsteady stretching surface. Heat Mass Transf. 42(8), 759-766 (2006) · doi:10.1007/s00231-005-0027-0
[11] Wang, C, Pop, I: Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method. J. Non-Newton. Fluid Mech. 138(2), 161-172 (2006) · Zbl 1195.76132 · doi:10.1016/j.jnnfm.2006.05.011
[12] Andersson, HI, Aarseth, JB, Braud, N, Dandapat, BS: Flow of a power-law fluid film on an unsteady stretching surface. J. Non-Newton. Fluid Mech. 62(1), 1-8 (1996) · doi:10.1016/0377-0257(95)01392-X
[13] Dandapat, BS, Santra, B, Vajravelu, K: The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet. Int. J. Heat Mass Transf. 50(5), 991-996 (2007) · Zbl 1124.80317 · doi:10.1016/j.ijheatmasstransfer.2006.08.007
[14] Chen, CH: Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface. Phys. Lett. A 370(1), 51-57 (2007) · doi:10.1016/j.physleta.2007.05.024
[15] Abel, MS, Mahesha, N, Tawade, J: Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl. Math. Model. 33(8), 3430-3441 (2009) · Zbl 1205.76040 · doi:10.1016/j.apm.2008.11.021
[16] Noor, NFM, Hashim, I: Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface. Int. J. Heat Mass Transf. 53(9), 2044-2051 (2010) · Zbl 1190.80025 · doi:10.1016/j.ijheatmasstransfer.2009.12.052
[17] Khan, Y, Qingbiao, W, Faraz, N, Yildirim, A: The effect of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Comput. Math. Appl. 61, 3391-3399 (2011) · Zbl 1222.76014 · doi:10.1016/j.camwa.2011.04.053
[18] Hazarika, GC, Konch, J: Effects of variable viscosity and thermal conductivity on magnetohydrodynamic forced convective boundary layer flow past a stretching/shrinking sheet prescribed with variable heat flux in the presence of heat source and constant suction. Int. J. Comput. Appl. 107(1), 50-58 (2014)
[19] Hayat, T, Ahmed, N, Sajid, M, Asghar, S: On the MHD flow of a second grade fluid in a porous channel. Comput. Math. Appl. 54, 407-414 (2007) · Zbl 1123.76072 · doi:10.1016/j.camwa.2006.12.036
[20] Abel, MS, Mahesha, N: Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl. Math. Model. 32, 1965-1983 (2008) · Zbl 1145.76469 · doi:10.1016/j.apm.2007.06.038
[21] Hayat, T, Shehzad, SA, Qasim, M, Obaidat, S: Flow of a second grade fluid with convective boundary conditions. Therm. Sci. 15, 253-261 (2011) · doi:10.2298/TSCI101014058H
[22] Hussnain, S, Mehmood, A, Ali, A: Three-dimensional channel flow of second grade fluid in rotating frame. Appl. Math. Mech. 33(3), 289-302 (2012) · Zbl 1266.76059 · doi:10.1007/s10483-012-1550-9
[23] Akinbobola, TE, Okoya, SS: The flow of second grade fluid over a stretching sheet with variable thermal conductivity and viscosity in the presence of heat source/sink. J. Niger. Math. Soc. 34, 331-342 (2015) · Zbl 1349.76007 · doi:10.1016/j.jnnms.2015.10.002
[24] Gital, AY, Abdulhameed, M, Abdulhamid, BM, Aliyu, MS, Hina, AD: Analytical solution of unsteady flow of a viscoelastic fluid due to an oscillating porous wall. Appl. Math. 5(4), 88-92 (2015)
[25] Das, K, Sharma, RP, Sarkar, A: Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet. J. Comput. Des. Eng. 3(4), 330-336 (2016)
[26] Hayat, T, Aziz, A, Muhammad, T, Ahmad, B: On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. J. Magn. Magn. Mater. 408, 99-106 (2016) · doi:10.1016/j.jmmm.2016.02.017
[27] Dinarvand, S, Doosthoseini, A, Doosthoseini, E, Rashidi, MM: Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Anal., Real World Appl. 11(2), 1159-1169 (2010) · Zbl 1253.76129 · doi:10.1016/j.nonrwa.2009.02.009
[28] Rashidi, MM, Momoniat, E, Rostami, B: Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters. J. Appl. Math. 2012, Article ID 780415 (2012) · Zbl 1264.76045
[29] Mabood, F, Ibrahim, SM, Rashidi, MM, Shadloo, MS, Lorenzini, G: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat Mass Transf. 93, 674-682 (2016) · doi:10.1016/j.ijheatmasstransfer.2015.10.014
[30] Qing, J, Bhatti, MM, Abbas, MA, Rashidi, MM, Ali, ME: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4), 123-128 (2016) · doi:10.3390/e18040123
[31] Mabood, F, Shateyi, S, Rashidi, MM, Momoniat, E, Freidoonimehr, N: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27(2), 742-749 (2016) · doi:10.1016/j.apt.2016.02.033
[32] Abbasbandy, S, Hayat, T, Alsaedi, A, Rashidi, MM: Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. Int. J. Numer. Methods Heat Fluid Flow 24(2), 390-401 (2014) · Zbl 1356.76416 · doi:10.1108/HFF-05-2012-0096
[33] Rajagopal, KR, Gupta, AS: An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. Meccanica 19, 156-160 (1984) · Zbl 0552.76008 · doi:10.1007/BF01560464
[34] Criminale, WO, Ericksen, JL, Filbey, GL: Steady shear flow of non-Newtonian fluid. Arch. Ration. Mech. Anal. 1, 410-417 (1957) · Zbl 0083.40701 · doi:10.1007/BF00298018
[35] Liao, SJ: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15(8), 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[36] Zhao, Y: http://numericaltank.sjtu.edu.cn/BVPh2_0.htm (retrieved 30.08.14) · Zbl 1195.76132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.