×

Probing spacetime noncommutative constant via charged astrophysical black hole lensing. (English) Zbl 1303.83003

Summary: We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Reissner-Nordström black-hole spacetime. Supposing that the gravitational field of the supermassive central object of the Galaxy is described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. Our results show that with the increase of the parameter \( \sqrt {\vartheta } \), the observables \(\theta_{\infty}\) and \(r_{m}\) decrease, while \(s\) increases. Our results also show that i) if \( \sqrt {\vartheta } \) is strong, the observables are close to those of the noncommutative Schwarzschild black hole lensing; ii) if \( \sqrt {\vartheta } \) is weak, the observables are close to those of the commutative Reissner-Nordström black hole lensing; iii) the detectable scope of \(\vartheta\) in a noncommutative Reissner-Nordström black hole lensing is \( 0.12 \leq \sqrt {\vartheta } \leq 0.26 \), which is wider than that in a noncommutative Schwarzschild black hole lensing, \( 0.18 \leq \sqrt {\vartheta } \leq 0.26 \). This may offer a way to probe the spacetime noncommutative constant \(\vartheta\) by the astronomical instruments in the future.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C45 Quantization of the gravitational field
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C57 Black holes
83C50 Electromagnetic fields in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Garattini and P. Nicolini, A noncommutative approach to the cosmological constant problem, Phys. Rev.D 83 (2011) 064021 [arXiv:1006.5418] [SPIRES].
[2] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [SPIRES]. · doi:10.1088/1126-6708/1999/09/032
[3] E. Witten, Bound states of strings and p-branes, Nucl. Phys.B 460 (1996) 335 [hep-th/9510135] [SPIRES]. · Zbl 1003.81527 · doi:10.1016/0550-3213(95)00610-9
[4] J. Bellissard, A. van Elst and H. Schulz-Baldes, The non-commutative geometry of the quantum Hall effect, J. Math. Phys.35 (1994) 5373 [cond-mat/9411052]. · Zbl 0824.46086 · doi:10.1063/1.530758
[5] J. Gamboa, M. Loewe, F. Mendez and J.C. Rojas, Estimating noncommutative effects from the quantum Hall effect, Mod. Phys. Lett.A 16 (2001) 2075 [hep-th/0104224] [SPIRES]. · Zbl 1138.81384
[6] J. Gamboa, M. Loewe and J.C. Rojas, Non-commutative quantum mechanics, Phys. Rev.D 64 (2001) 067901 [hep-th/0010220] [SPIRES].
[7] P.A. Horvathy, The non-commutative Landau problem and the Peierls substitution, Ann. Phys.299 (2002) 128 [hep-th/0201007] [SPIRES]. · Zbl 1005.81098 · doi:10.1006/aphy.2002.6271
[8] M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, arXiv:0908.3683 [SPIRES]. · Zbl 1243.83005
[9] W.T. Kim and J.J. Oh, Noncommutative open strings from Dirac quantization, Mod. Phys. Lett.A 15 (2000) 1597 [hep-th/9911085] [SPIRES]. · Zbl 0973.81122
[10] R. Jackiw, Physical instances of noncommuting coordinates, Nucl. Phys. Proc. Suppl.108 (2002) 30 [hep-th/0110057] [SPIRES]. · Zbl 1080.81615 · doi:10.1016/S0920-5632(02)01302-6
[11] R. Jackiw, Physical instances of noncommuting coordinates, Nucl. Phys. Proc. Suppl.108 (2002) 30 [Phys. Part. Nucl.33 (2002) S6] [hep-th/0110057] [SPIRES]. · Zbl 1080.81615 · doi:10.1016/S0920-5632(02)01302-6
[12] L. Landau, The theory of superfluidity of helium II, Zh. Eksp. Teor. Fiz.11 (1941) 592, [J. Phys. USSR, 5 (1941) 71]. · Zbl 0027.18505
[13] S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys.140 (1982) 372 [SPIRES]. · doi:10.1016/0003-4916(82)90164-6
[14] H.S. Snyder, Quantized space-time, Phys. Rev.71 (1947) 38 [SPIRES]. · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[15] H.S. Snyder, The electromagnetic field in quantized space-time, Phys. Rev.72 (1947) 68 [SPIRES]. · Zbl 0041.33118 · doi:10.1103/PhysRev.72.68
[16] C.N. Yang, On quantized space-time, Phys. Rev.72 (1947) 874 [SPIRES]. · Zbl 0029.18407 · doi:10.1103/PhysRev.72.874
[17] A. Connes, Noncommutative geometry, Academic Press, New York U.S.A. (1994). · Zbl 0818.46076
[18] A. Connes and M. Marcolli, A walk in the noncommutative garden, math/0601054. · Zbl 1145.14005
[19] E. Akofor, Quantum theory, noncommutativity and heuristics, arXiv:1012.5133 [SPIRES].
[20] A. Smailagic and E. Spallucci, Feynman path integral on the noncommutative plane, J. Phys.A 36 (2003) L467 [hep-th/0307217] [SPIRES]. · Zbl 1042.81044
[21] A. Smailagic and E. Spallucci, UV divergence-free QFT on noncommutative plane, J. Phys.A 36 (2003) L517 [hep-th/0308193] [SPIRES]. · Zbl 1041.81593
[22] S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired charged black holes, Phys. Lett.B 645 (2007) 261 [gr-qc/0612035] [SPIRES]. · Zbl 1256.83014
[23] J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys.B 591 (2000) 265 [hep-th/0005129] [SPIRES]. · Zbl 0991.81120 · doi:10.1016/S0550-3213(00)00525-3
[24] K. Morita, Y. Okumura and E. Umezawa, Lorentz invariance and unitarity problem in non-commutative field theory, Prog. Theor. Phys.110 (2003) 989 [hep-th/0309155] [SPIRES]. · Zbl 1055.81075 · doi:10.1143/PTP.110.989
[25] P. Fischer and V. Putz, No UV/IR mixing in unitary space-time noncommutative field theory, Eur. Phys. J.C 32 (2004) 269 [hep-th/0306099] [SPIRES]. · Zbl 1065.81596 · doi:10.1140/epjc/s2003-01396-8
[26] Y. Liao and K. Sibold, Time-ordered perturbation theory on noncommutative spacetime. II. Unitarity, Eur. Phys. J.C 25 (2002) 479 [hep-th/0206011] [SPIRES]. · Zbl 1078.81574 · doi:10.1007/s10052-002-1018-7
[27] T. Ohl, R. Ruckl and J. Zeiner, Unitarity of time-like noncommutative gauge theories: The violation of Ward identities in time-ordered perturbation theory, Nucl. Phys.B 676 (2004) 229 [hep-th/0309021] [SPIRES]. · Zbl 1097.81643 · doi:10.1016/j.nuclphysb.2003.10.022
[28] A. Smailagic and E. Spallucci, Lorentz invariance and unitarity in UV-finiteness of QFT on noncommutative spacetime, J. Phys.A 37 (2004) 1 [hep-th/0406174] [SPIRES]. · Zbl 1062.81138
[29] P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys.A 24 (2009) 1229 [arXiv:0807.1939] [SPIRES]. · Zbl 1170.83417
[30] S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired charged black holes, Phys. Lett.B 645 (2007) 261 [gr-qc/0612035] [SPIRES]. · Zbl 1256.83014
[31] P. Nicolini and E. Spallucci, Noncommutative geometry inspired wormholes and dirty black holes, Class. Quant. Grav.27 (2010) 015010. · Zbl 1184.83013 · doi:10.1088/0264-9381/27/1/015010
[32] A. Smailagic and E. Spallucci, ’Kerrr’ black hole: the Lord of the string, Phys. Lett.B 688 (2010) 82 [arXiv:1003.3918] [SPIRES].
[33] L. Modesto and P. Nicolini, Charged rotating noncommutative black holes, Phys. Rev.D 82 (2010) 104035 [arXiv:1005.5605] [SPIRES].
[34] E. Spallucci, A. Smailagic and P. Nicolini, Pair creation by higher dimensional, regular, charged, micro black holes, Phys. Lett.B 670 (2009) 449 [arXiv:0801.3519] [SPIRES].
[35] K. Nozari and S.H. Mehdipour, Hawking radiation as quantum tunneling from noncommutative Schwarzschild black hole, Class. Quant. Grav.25 (2008) 175015. · Zbl 1149.83324 · doi:10.1088/0264-9381/25/17/175015
[36] W. Kim, E.J. Son and M. Yoon, Thermodynamic similarity between the noncommutative Schwarzschild black hole and the Reissner-Nordström black hole, JHEP04 (2008) 042 [arXiv:0802.1757] [SPIRES]. · Zbl 1246.83123 · doi:10.1088/1126-6708/2008/04/042
[37] B. Vakili, N. Khosravi and H.R. Sepangi, Thermodynamics of noncommutative de Sitter spacetime, Int. J. Mod. Phys.D 18 (2009) 159 [arXiv:0804.4326] [SPIRES]. · Zbl 1163.83353
[38] M. Burić and J. Madore, Spherically symmetric noncommutative space: D = 4, Eur. Phys. J.C 58 (2008) 347 [arXiv:0807.0960] [SPIRES]. · Zbl 1189.81103
[39] W.-H. Huang and K.-W. Huang, Thermodynamics on noncommutative geometry in coherent state formalism, Phys. Lett.B 670 (2009) 416 [arXiv:0808.0324] [SPIRES].
[40] M.-I. Park, Smeared hair and black holes in three-dimensional de Sitter spacetime, Phys. Rev.D 80 (2009) 084026 [arXiv:0811.2685] [SPIRES].
[41] K. Nozari and S.H. Mehdipour, Parikh-Wilczek tunneling from noncommutative higher dimensional black holes, JHEP03 (2009) 061 [arXiv:0902.1945] [SPIRES]. · doi:10.1088/1126-6708/2009/03/061
[42] J.J. Oh and C. Park, Gravitational collapse of the shells with the smeared gravitational source in noncommutative geometry, JHEP03 (2010) 086 [arXiv:0906.4428] [SPIRES]. · Zbl 1271.83058 · doi:10.1007/JHEP03(2010)086
[43] I. Arraut, D. Batic and M. Nowakowski, Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry, J. Math. Phys.51 (2010) 022503 [arXiv:1001.2226] [SPIRES]. · Zbl 1309.83078 · doi:10.1063/1.3317913
[44] H. Garcia-Compean and C. Soto-Campos, Noncommutative effects in the black hole evaporation in two dimensions, Phys. Rev.D 74 (2006) 104028 [hep-th/0607071] [SPIRES].
[45] E. Di Grezia, G. Esposito and G. Miele, Gravitational amplitudes in black-hole evaporation: The effect of non-commutative geometry, Class. Quant. Grav.23 (2006) 6425 [hep-th/0607157] [SPIRES]. · Zbl 1133.83352 · doi:10.1088/0264-9381/23/22/020
[46] E. Di Grezia, G. Esposito and G. Miele, Black hole evaporation in a spherically symmetric non-commutative space-time, J. Phys.A 41 (2008) 164063 [arXiv:0707.3318] [SPIRES]. · Zbl 1140.83371
[47] Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and evaporation of the noncommutative black hole, JHEP02 (2007) 012 [gr-qc/0611130] [SPIRES]. · doi:10.1088/1126-6708/2007/02/012
[48] R. Casadio and P. Nicolini, The decay-time of non-commutative micro-black holes, JHEP11 (2008) 072 [arXiv:0809.2471] [SPIRES]. · doi:10.1088/1126-6708/2008/11/072
[49] Y.-G. Miao, Z. Xue and S.-J. Zhang, Quantum tunneling and spectroscopy of noncommutative Kerr black hole, arXiv:1102.0074 [SPIRES]. · Zbl 1266.83123
[50] S.-W. Wei, Y.-X. Liu, Z.-H. Zhao and C.-E. Fu, Area spectrum of Schwarzschild black hole inspired by noncommutative geometry, arXiv:1004.2005 [SPIRES].
[51] R.B. Mann and P. Nicolini, Cosmological production of noncommutative black holes, Phys. Rev.D 84 (2011) 064014 [arXiv:1102.5096] [SPIRES].
[52] J.W. Moffat, Ultraviolet Complete Quantum Gravity, Eur. Phys. J. Plus126 (2011) 43 [arXiv:1008.2482] [SPIRES]. · doi:10.1140/epjp/i2011-11043-7
[53] D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at the LHC, JHEP05 (2010) 022 [arXiv:1003.1798] [SPIRES]. · Zbl 1288.83032 · doi:10.1007/JHEP05(2010)022
[54] M. Bleicher and P. Nicolini, Large extra dimensions and small black holes at the LHC, J. Phys. Conf. Ser.237 (2010) 012008 [arXiv:1001.2211] [SPIRES]. · doi:10.1088/1742-6596/237/1/012008
[55] O. Bertolami and C.A.D. Zarro, Towards a noncommutative astrophysics, Phys. Rev.D 81 (2010) 025005 [arXiv:0908.4196] [SPIRES].
[56] C. Ding, S. Kang, C.-Y. Chen, S. Chen and J. Jing, Strong gravitational lensing in a noncommutative black-hole spacetime, Phys. Rev.D 83 (2011) 084005 [arXiv:1012.1670] [SPIRES].
[57] J. Wambsganss, Gravitational lensing in astronomy, Liv. Rev. Rel. (1998) 1 [www.livingreviews.org/Articles/Volume1/1998-12wamb]. · Zbl 1016.85500
[58] P. Schneider, J. Ehlers and E.E. Falco, Gravitational lenses, Springer, Berlin Germany (1992). · doi:10.1007/978-1-4612-2756-4
[59] H. Hoekstra and B. Jain, Weak Gravitational Lensing and its Cosmological Applications, Ann. Rev. Nucl. Part. Sci.58 (2008) 99 [arXiv:0805.0139] [SPIRES]. · doi:10.1146/annurev.nucl.58.110707.171151
[60] C. Darwin, The gravity field of a particle, Proc. R. Soc. London249 (1959) 180. · Zbl 0085.42603 · doi:10.1098/rspa.1959.0015
[61] K.S. Virbhadra, D. Narasimha and S.M. Chitre, Role of the scalar field in gravitational lensing, Astron. Astrophys.337 (1998) 1 [astro-ph/9801174] [SPIRES].
[62] K.S. Virbhadra and G.F.R. Ellis, Schwarzschild black hole lensing, Phys. Rev.D 62 (2000) 084003 [astro-ph/9904193] [SPIRES].
[63] C.-M. Claudel, K.S. Virbhadra and G.F.R. Ellis, The geometry of photon surfaces, J. Math. Phys.42 (2001) 818 [gr-qc/0005050] [SPIRES]. · Zbl 1061.83525 · doi:10.1063/1.1308507
[64] K.S. Virbhadra and G.F.R. Ellis, Gravitational lensing by naked singularities, Phys. Rev.D 65 (2002) 103004 [SPIRES].
[65] S. Frittelli, T.P. Kling and E.T. Newman, Spacetime perspective of Schwarzschild lensing, Phys. Rev.D 61 (2000) 064021 [gr-qc/0001037] [SPIRES].
[66] A. Bhadra, Gravitational lensing by a charged black hole of string theory, Phys. Rev.D 67 (2003) 103009 [gr-qc/0306016] [SPIRES].
[67] K. Sarkar and A. Bhadra, Strong field gravitational lensing in the Brans-Dicke theory, Class. Quant. Grav.23 (2006) 6101 [gr-qc/0602087] [SPIRES]. · Zbl 1133.83389 · doi:10.1088/0264-9381/23/22/002
[68] E.F. Eiroa, G.E. Romero and D.F. Torres, Reissner-Nordstrom black hole lensing, Phys. Rev.D 66 (2002) 024010 [gr-qc/0203049] [SPIRES].
[69] R.A. Konoplya, Particle motion around magnetized black holes: Preston-Poisson space-time, Phys. Rev.D 74 (2006) 124015 [gr-qc/0610082] [SPIRES].
[70] R.A. Konoplya, Magnetized black hole as a gravitational lens, Phys. Lett.B 644 (2007) 219 [gr-qc/0608066] [SPIRES]. · Zbl 1248.83066
[71] N. Mukherjee and A.S. Majumdar, Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe, Gen. Rel. Grav.39 (2007) 583 [astro-ph/0605224] [SPIRES]. · Zbl 1137.83317 · doi:10.1007/s10714-007-0407-5
[72] V. Perlick, On the exact gravitational lens equation in spherically symmetric and static spacetimes, Phys. Rev.D 69 (2004) 064017 [gr-qc/0307072] [SPIRES].
[73] A.Y. Bin-Nun, Strong gravitational lensing by Sgr A*, Class. Quant. Grav.28 (2011) 114003. · Zbl 1219.83044 · doi:10.1088/0264-9381/28/11/114003
[74] S.-W. Wei, Y.-X. Liu, C.-E. Fu and K. Yang, Strong field limit analysis of gravitational lensing in Kerr-Taub-NUT spacetime, arXiv:1104.0776 [SPIRES].
[75] A.S. Majumdar and N. Mukherjee, Braneworld black holes in cosmology and astrophysics, Int. J. Mod. Phys.D 14 (2005) 1095 [astro-ph/0503473] [SPIRES]. · Zbl 1078.83023
[76] R. Whisker, Strong gravitational lensing by braneworld black holes, Phys. Rev.D 71 (2005) 064004 [astro-ph/0411786] [SPIRES].
[77] A.S. Eddington, Internal constitution of the stars, Cambridge University Press, Cambridge U.K. (1926). · JFM 52.1021.05
[78] N.K. Glendenning, Compact stars A&A Library, Springer-Verlag, New York U.S.A. (2000). · doi:10.1007/978-1-4612-1212-6
[79] J. Bally and E.R. Harrison, The electrically polarized universe, Astrophys. J.220 (1978) 743. · doi:10.1086/155961
[80] E. Olson and M. Bailyn, Internal structure of multicomponent static spherical gravitating fluids, Phys. Rev.D 12 (1975) 3030 [SPIRES].
[81] E. Olson and M. Bailyn, Charge effects in a static, spherically symmetric, gravitating fluid, Phys. Rev.D 13 (1976) 2204 [SPIRES].
[82] C.R. Ghezzi, Relativistic structure, stability and gravitational collapse of charged neutron stars, Phys. Rev.D 72 (2005) 104017 [gr-qc/0510106] [SPIRES].
[83] C.R. Ghezzi and P.S. Letelier, Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstrom space-times, Phys. Rev.D 75 (2007) 024020 [astro-ph/0503629] [SPIRES].
[84] A.N. Baushev and P. Chardonnet, Electric charge estimation of a new-born black hole, Int. J. Mod. Phys.D 18 (2009) 2035 [arXiv:0905.4071] [SPIRES]. · Zbl 1181.83100
[85] R. Ruffini, J.D. Salmonson, J.R. Wilson and S.-S. Xue, On the pair electromagnetic pulse of a black hole with electromagnetic structure, Astron. Astrophys.350 (1999) 334 [astro-ph/9907030] [SPIRES].
[86] J.A. de Diego, D. Dultzin-Hacyan, J.G. Trejo and D. Núñez, A natural mechanism to induce an electric charge into a black hole, astro-ph/0405237 [SPIRES].
[87] H.J. Mosquera Cuesta, A. Penna-Firme and A. Perez-Lorenzana, Charge asymmetry in brane world, Phys. Rev.D 67 (2003) 087702 [hep-ph/0203010] [SPIRES].
[88] S.L. Shapiro and S.A. Teukolsky, White dwarfs, black holes and neutron stars: the physics of compact objects, Wiley, New York U.S.A. (1983). · doi:10.1002/9783527617661
[89] R. Ruffini, C.L. Bianco, P. Chardonnet, F. Fraschetti and S.S. Xue, On a possible GRB-supernova time sequence, Astrophys. J.555 (2001) L117 [astro-ph/0106534] [SPIRES]. · doi:10.1086/323177
[90] V. Bozza, Quasi-equatorial gravitational lensing by spinning black holes in the strong field limit, Phys. Rev.D 67 (2003) 103006 [gr-qc/0210109] [SPIRES].
[91] V. Bozza, Gravitational lensing in the strong field limit, Phys. Rev.D 66 (2002) 103001 [gr-qc/0208075] [SPIRES].
[92] S.-b. Chen and J.-l. Jing, Strong field gravitational lensing in the deformed Hǒrava-Lifshitz black hole, Phys. Rev.D 80 (2009) 024036 [arXiv:0905.2055] [SPIRES].
[93] V. Bozza, S. Capozziello, G. Iovane and G. Scarpetta, Strong field limit of black hole gravitational lensing, Gen. Rel. Grav.33 (2001) 1535 [gr-qc/0102068] [SPIRES]. · Zbl 1009.83027 · doi:10.1023/A:1012292927358
[94] D. Richstone et al., Supermassive black holes and the evolution of galaxies, Nature395 (1998) A14 [astro-ph/9810378] [SPIRES].
[95] F. Melia and H. Falcke, The supermassive black hole at the galactic center, Ann. Rev. Astron. Astrophys.39 (2001) 309 [astro-ph/0106162] [SPIRES]. · doi:10.1146/annurev.astro.39.1.309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.