×

Determining the stress-strain state of elastic-plastic solids with a lateral crack-like defect with the use of a model with a linear size. (English. Russian original) Zbl 1458.74130

J. Appl. Mech. Tech. Phys. 59, No. 6, 1085-1094 (2018); translation from Prikl. Mekh. Tekh. Fiz. 59, No. 6, 143-154 (2018).
Summary: A model of a physical section that describes stress-strain states in elastic-plastic solids weakened by cracks is proposed. The problem of plane deformation and the stress state of a solid of an infinite size of an arbitrary geometry, weakened by a physical section, is solved. It comes down to a system of two variational equations with respect to displacement fields in the parts of the solid bordering the interaction layer. For a material whose properties are close to those of a D16T alloy, the linear parameter introduced into the crack model is estimated, and the critical conditions of solids with lateral cracks in the case of a normal detachment are determined.

MSC:

74R20 Anelastic fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Engineering Fracture Mechanics, Vol. 70, No. 14 (Special Issue): Fundamentals and Applications of Cohesive Models (2003).
[2] Dugdale, D. S., Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 8, 100-104, (1960)
[3] Goldshtein, R. V.; Osipenko, N. M., Fracture and Formation of Structures, Dokl. Akad. Nauk SSSR, 240, 111-126, (1978)
[4] Petrov, Yu. V., Quantum Analogy in Fracture Mechanics, Fiz. Tv. Tela, 38, 3385-3393, (1996)
[5] Kurguzov, V. D.; Astapov, N. S.; Astapov, I. S., Fracture Model for Structured Quasibrittle Materials, Prikl. Mekh. Tekh. Fiz., 55, 173-185, (2014)
[6] V. M. Kornev and V. D. Kurguzov, “Multiparametric Sufficient Criterion of Quasi-Brittle Fracture for Complicated Stress State,” Eng. Fracture Mech. 75 (5), 1099-1113.
[7] H. Neuber, Kerbspannunglehre: Grunglagen für Genaue Spannungsrechnung (Springer-Verlag, 1937).
[8] Novozhilov, V. V., On a Necessary and Sufficient Criterion for Brittle Strength, Prikl. Mat. Mekh., 33, 212-222, (1969)
[9] G. N. Savin, Plane Problem of Moment Theory of Elasticity (Izd. Kiev. Gos. Univ., Kiev, 1965) [in Russian].
[10] Aero, A. L., Essentially Nonlinear Micromechanics of a Medium with a Variable Periodic Structure, Usp. Mekh., 3, 130-176, (2002)
[11] Pobedrya, B. E.; Omarov, S. E., Constitutive Relations in the Moment Theory of Elasticity, Vestn. Mosk. Gos. Univ., Ser 1: Mat., Mekh., 3, 56-58, (2007) · Zbl 1164.74348
[12] Vasil’ev, V. V.; Lur’e, S. A., New Solution of the Plane Problem of an Equilibrium Crack, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 51, 61-67, (2016)
[13] Revuzhenko, A. F., Version of the Linear Elasticity Theory with a Structural Parameter, Prikl. Mekh. Tekh. Fiz., 57, 45-52, (2016) · Zbl 1394.74012
[14] Omarov, S. E., Determining the Material Constant in the Problem of Equilibrium of an Infinite Elastic Plane Weakened by a Circular Hole, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 44, 144-149, (2009)
[15] Goldshtein, R. V.; Osipenko, N. M., Estimating the Effective Strength of Solids under Compression, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 4, 80-93, (2017)
[16] Needleman, A.; Giessen, E., Micromechanics of Fracture: Connecting Physics to Engineering, MRS Bull., 26, 211-214, (2001)
[17] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, et al., Structural Levels of Plastic Strain and Fracture (Nauka, Novosibirsk, 1990) [in Russian].
[18] Domozhirov, L. I.; Makhutov, N. A., Hierarchy of Cracks in Cyclic Fracture Mechanics, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 5, 17-26, (1999)
[19] Barenblatt, G. I.; Golitsyn, G. S., Similarity Criteria and Scales for Crystals, Fiz. Mezomekh., 20, 116-119, (2017)
[20] Carrol, J. D.; Abuzaid, W. Z.; Lambros, J.; Sehitoglu, H., On the Interactions between Strain Accumulation, Microstructure, and Fatigue Crack Behavior, Int. J. Fracture, 180, 223-241, (2013)
[21] Volegov, P. S.; Gribov, D. S.; Trusov, P. V., Damage and Fracture: Classical Continuum Theories, Fiz. Mezomekh., 18, 11-24, (2015)
[22] Glagolev, V. V.; Markin, A. A., Finding the Elastic Strain Limit at the Tip Region of a Physical Cut with Arbitrarily Loaded Faces, Prikl. Mekh. Tekh. Fiz., 53, 174-183, (2012) · Zbl 1298.74025
[23] Glagolev, V. V.; Glagolev, L. V.; Markin, A. A., Stress-Strain State of Elastoplastic Bodies with Crack, Acta Mech. Solida Sinica, 28, 375-383, (2015)
[24] A. A. Ilyushin, Plasticity, Vol. 1: Elastic-Plastic Deformations (Gostekhteoretizdat, Moscow-Leningrad, 1948) [in Russian].
[25] Vorovich, I. I.; Krasovskii, Yu. P., Method of Plastic Solutions, Dokl. Akad. Nauk SSSR, 126, 740-743, (1959)
[26] H. G. Hahn, Elastizit¨atstheorie: Grundiagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und r¨aumliche Probleme (Teubner, Stuttgart, 1985).
[27] G. P. Cherepanov, Mechanics of Brittle Fracture (Nauka, Moscow, 1974; McGraw-Hill, New York, 1979). · Zbl 0442.73100
[28] V. Z. Parton and E. M. Morozov, Mechanics of Elastic-Plastic Fracture (Nauka, Moscow, 1985; Hemisphere, Washington, 1989). · Zbl 0783.73005
[29] Klevtsov, G. V.; Botvina, L. R., Microscopic and Macroscopic Plastic Deformation As a Criterion of the Limiting State of a Material during Fracture, Probl. Prochn., 4, 24-28, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.