×

Isogeometric analysis for non-classical Bernoulli-Euler beam model incorporating microstructure and surface energy effects. (English) Zbl 1485.74094

Summary: The non-classical Bernoulli-Euler beam model contains a material length scale parameter to account for the microstructure effect on the bulk material and three surface elasticity constants to capture the distinguished material properties on a surface. The present work is dedicated to develop a new effective computational approach for the non-classical Bernoulli-Euler beam model based on the isogeometric analysis (IGA) with high-order continuity basis functions of non-uniform rational B-splines (NURBS), which effectively fulfills the higher continuity requirements in the non-classical Bernoulli-Euler beam. To verify the new approach, the numerical results obtained from the new developed approach of the two applications for both simply supported and cantilever beams are compared with the corresponding analytical results available in the literature. Eventually, the approach verified is further utilized to explore the effects of microstructure and surface energy on beam deflection and natural frequency. For the static bending problem, it is detected that both the microstructure and surface energy effects enhance the beam bending stiffness. And for the free vibration problem, it is found that both the microstructure and surface energy effects increase the beam natural frequency. Furthermore, it is seen that the effect of microstructure on the natural frequency is more significant than the surface energy effect at nanoscale.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M25 Micromechanics of solids
74H45 Vibrations in dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids., 51, 1477-1508 (2003) · Zbl 1077.74517
[2] Mcfarland, A. W.; Colton, J. S., Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromechanics Microengineering, 15, 1060-1067 (2005)
[3] Park, S. K.; Gao, X. L., Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromechanics Microengineering, 16, 2355-2359 (2006)
[4] Chen, J. Y.; Huang, Y.; Ortiz, M., Fracture analysis of cellular materials: a strain gradient model, J. Mech. Phys. Solids., 46, 789-828 (1998) · Zbl 1056.74508
[5] Hutchinson, J. W., Plasticity at the micron scale, Int. J. Solids Struct., 37, 225-238 (2000) · Zbl 1075.74022
[6] Miller, R. E.; Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147 (2000)
[7] Gao, X. L., An expanding cavity model incorporating strain-hardening and indentation size effects, Int. J. Solids Struct., 43, 6615-6629 (2006) · Zbl 1120.74655
[8] Eringen, A. C., Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1-16 (1972) · Zbl 0229.73006
[9] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743 (2002) · Zbl 1037.74006
[10] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[11] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 417-438 (1965)
[12] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805
[13] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448 (1962) · Zbl 0112.38906
[14] Koiter, W. T., Couple stresses in the theory of elasticity, I and II, Proc. K. Ned. Akad. van Wet. Ser. B., 67, 17-44 (1964) · Zbl 0124.17405
[15] Thai, H. T.; Vo, T. P.; Nguyen, T. K.; Kim, S. E., A review of continuum mechanics models for size-dependent analysis of beams and plates, Compos. Struct., 177, 196-219 (2017)
[16] Ma, H. M.; Gao, X. L.; Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids., 56, 3379-3391 (2008) · Zbl 1171.74367
[17] Ma, H. M.; Gao, X. L.; Reddy, J. N., A nonclassical Reddy-Levinson beam model based on a modified couple stress theory, Int. J. Multiscale Comput. Eng., 8, 167-180 (2010)
[18] Salamat-Talab, M.; Nateghi, A.; Torabi, J., Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory, Int. J. Mech. Sci., 57, 63-73 (2012)
[19] Steigmann, D. J.; Ogden, R. W., Plane deformations of elastic solids with intrinsic boundary elasticity, Proc. R. Soc. A Math. Phys. Eng. Sci., 453, 853-877 (1997) · Zbl 0938.74014
[20] Steigmann, D. J.; Ogden, R. W., Elastic surface-substrate interactions, Proc. R. Soc. A Math. Phys. Eng. Sci., 455, 437-474 (1999) · Zbl 0926.74016
[21] Gurtin, M. E.; Ian Murdoch, A., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 291-323 (1975) · Zbl 0326.73001
[22] Gurtin, M. E.; Ian Murdoch, A., Surface stress in solids, Int. J. Solids Struct., 14, 431-440 (1978) · Zbl 0377.73001
[23] Gao, X. L.; Mahmoud, F. F., A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects, Zeitschrift Fur Angew. Math. Und Phys., 65, 393-404 (2014) · Zbl 1290.74002
[24] Gao, X. L., A new Timoshenko beam model incorporating microstructure and surface energy effects, Acta Mech, 226, 457-474 (2014) · Zbl 1323.74045
[25] Gao, X. L.; Zhang, G. Y., A microstructure- and surface energy-dependent third-order shear deformation beam model, Zeitschrift Fur Angew. Math. Und Phys., 66, 1871-1894 (2015) · Zbl 1327.74007
[26] Shanab, R. A.; Attia, M. A.; Mohamed, S. A., Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects, Int. J. Mech. Sci., 131-132, 908-923 (2017)
[27] Attia, M. A.; Abdel Rahman, A. A., On vibrations of functionally graded viscoelastic nanobeams with surface effects, Int. J. Eng. Sci., 127, 1-32 (2018) · Zbl 1423.74383
[28] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195 (2005) · Zbl 1151.74419
[29] Borković, A.; Kovačević, S.; Radenković, G.; Milovanović, S.; Guzijan-Dilber, M., Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli-Euler beam, Comput. Methods Appl. Mech. Eng., 334, 238-267 (2018) · Zbl 1440.74180
[30] Phung-Van, P.; Tran, L. V.; Ferreira, A. J.M.; Nguyen-Xuan, H.; Abdel-Wahab, M., Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads, Nonlinear Dyn, 87, 879-894 (2017) · Zbl 1372.74058
[31] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Eng., 316, 1157-1178 (2017) · Zbl 1439.74455
[32] Guo, Y.; Heller, J.; Hughes, T. J.R.; Ruess, M.; Schillinger, D., Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format, Comput. Methods Appl. Mech. Eng., 336, 39-79 (2018) · Zbl 1440.74397
[33] Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L., Isogeometric frictionless contact analysis with the third medium method, Comput. Mech., 62, 1009-1021 (2018) · Zbl 1469.74115
[34] Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H., A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear, Comput. Mech., 62, 563-585 (2018) · Zbl 1446.74163
[35] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Eng., 316, 151-185 (2017) · Zbl 1439.74370
[36] Singh, S. K.; Singh, I. V.; Mishra, B. K.; Bhardwaj, G.; Bui, T. Q., A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations, Theor. Appl. Fract. Mech., 88, 74-96 (2017)
[37] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric methods for computational electromagnetics: b-spline and T-spline discretizations, J. Comput. Phys., 257, 1291-1320 (2014) · Zbl 1351.78036
[38] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA), Comput. Fluids., 142, 15-20 (2017) · Zbl 1390.76689
[39] Wang, C.; Wu, M. C.H.; Xu, F.; Hsu, M. C.; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis, Comput. Fluids., 142, 3-14 (2017) · Zbl 1390.76013
[40] Xia, Z.; Wang, Y.; Wang, Q.; Mei, C., GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis, Struct. Multidiscip. Optim., 56, 413-434 (2017)
[41] Lieu, Q. X.; Lee, J., A multi-resolution approach for multi-material topology optimization based on isogeometric analysis, Comput. Methods Appl. Mech. Eng., 323, 272-302 (2017) · Zbl 1439.74283
[42] Nguyen, N. T.; Hui, D.; Lee, J.; Nguyen-Xuan, H., An efficient computational approach for size-dependent analysis of functionally graded nanoplates, Comput. Methods Appl. Mech. Eng., 297, 191-218 (2015) · Zbl 1423.74550
[43] Yu, T.; Hu, H.; Zhang, J.; Bui, T. Q., Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory, Thin-Walled Struct, 138, 1-14 (2019)
[44] Yu, T.; Zhang, J.; Hu, H.; Bui, T. Q., A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis, Compos. Struct., 211, 76-88 (2019)
[45] Nguyen, H. X.; Nguyen, T. N.; Abdel-Wahab, M.; Bordas, S. P.A.; Nguyen-Xuan, H.; Vo, T. P., A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Methods Appl. Mech. Eng., 313, 904-940 (2017) · Zbl 1439.74453
[46] Thai, S.; Thai, H. T.; Vo, T. P.; Patel, V. I., Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis, Comput. Struct., 190, 219-241 (2017)
[47] Niiranen, J.; Kiendl, J.; Niemi, A. H.; Reali, A., Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates, Comput. Methods Appl. Mech. Eng., 316, 328-348 (2017) · Zbl 1439.74037
[48] Yaghoubi, S. T.; Balobanov, V.; Mousavi, M.; Niiranen, J., Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic flexural and shear-deformable beams, Eur. J. Mech. A-Solid., 69, 113-123 (2018) · Zbl 1406.74409
[49] Balobanov, V.; Kiendl, J.; Khakalo, S.; Niiranen, J., Kirchhoff-Love shells within strain gradient elasticity: weak and strong formulations and an H^3-conforming isogeometric implementation, Comput. Methods Appl. Mech. Eng., 344, 837-857 (2019) · Zbl 1440.74057
[50] Balobanov, V.; Niiranen, J., Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity, Comput. Methods Appl. Mech. Eng., 339, 137-159 (2018) · Zbl 1440.74179
[51] Niiranen, J.; Balobanov, V.; Kiendl, J.; Hosseini, S. B., Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro- and nano-beam models, Math. Mech. Solids., 24, 312-335 (2017) · Zbl 1425.74264
[52] Khakalo, S.; Balobanov, V.; Niiranen, J., Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics, Int. J. Eng. Sci., 127, 33-52 (2018) · Zbl 1423.74343
[53] Khakalo, S.; Niiranen, J., Lattice structures as thermoelastic strain gradient metamaterials: evidence from full-field simulations and applications to functionally step-wise-graded beams, Compos. B. Eng., 177, Article 107224 pp. (2019)
[54] Khakalo, S.; Niiranen, J., Anisotropic strain gradient thermoelasticity for cellular structures: plate models, homogenization and isogeometric analysis, J. Mech. Phys. Solids., 134, Article 103728 pp. (2020) · Zbl 1481.74108
[55] Liu, S.; Yu, T.; Van Lich, L.; Yin, S.; Bui, T. Q., Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis, Comput. Struct., 212, 173-187 (2019)
[56] Gu, S. T.; He, Q. C., Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, J. Mech. Phys. Solids., 59, 1413-1426 (2011) · Zbl 1270.74037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.