×

A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing. (English) Zbl 1472.65058

Summary: In this paper, a derivative-free RMIL conjugate gradient projection method for solving large-scale nonlinear monotone equations with convex constraints is proposed. The proposed method is a modification of an RMIL conjugate gradient method combined with the projection techniques. We establish its global convergence under appropriate conditions. The method is then compared with other existing methods in the literature and the numerical results indicate that the method is efficient. Furthermore, the proposed method is used to recover a sparse signal from an incomplete and contaminated sampling measurements and the results are promising.

MSC:

65H10 Numerical computation of solutions to systems of equations
47H05 Monotone operators and generalizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abubakar, A. B.; Kumam, P.; Mohammad, H.; Awwal, A. M., An efficient conjugate gradient method for convex constrained monotone nonlinear equations with applications, Mathematics, 7, 767 (2019)
[2] Awwal, A. M.; Kumam, P.; Mohammad, H.; Watthayu, W.; Abubakar, A. B., A Perry-type derivative-free algorithm for solving nonlinear systems of equations and minimizing \(l_1\) regularized problems, Optimization (2020)
[3] Barari, M.; Karimi, H. R.; Razaghian, F., Analog circuit design optimization based on evolution algorithms, Math. Probl. Eng., 2014, Article 593684 pp. (2014)
[4] Bello, L.; Raydan, M., Convex constrained optimization for the seismic reflection tomography problem, J. Appl. Geophys., 62, 158-166 (2007)
[5] Chandrasekaran, V.; Parrilo, P. A.; Willsky, A. S., Latent variable graphical model selection via convex optimization, Ann. Stat., 40, 4, 1935-1967 (2012) · Zbl 1257.62061
[6] Dai, Z.; Zhu, H., A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations, Mathematics, 8, 168 (2020)
[7] Ding, Y.; Xiao, Y.; Li, J., A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66, 12, 2309-2328 (2017) · Zbl 1383.90037
[8] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213 (2002) · Zbl 1049.90004
[9] Dreed, N. K.; Hashim, K. H.; Mahdi, M. M.; Wasi, H. A.; Dwail, H. H.; Shiker, M. A.K.; Hussein, H. A., Solving a large-scale nonlinear system of monotone equations by using a projection technique, J. Eng. Appl. Sci., 14, 7, 10102-10108 (2019)
[10] Evgeniou, T.; Pontil, M.; Toubia, O., A convex optimization approach to modelling consumer heterogeneity in conjoint estimation, Mark. Sci., 26, 6, 805-818 (2007)
[11] Fang, X., A class of new derivative-free gradient type methods for large-scale nonlinear systems of monotone equations, J. Inequal. Appl., 2020, Article 93 pp. (2020) · Zbl 1503.65103
[12] Feng, D.; Sun, M.; Wang, X., A family of conjugate gradient methods for large-scale nonlinear equations, J. Inequal. Appl., 2017, Article 236 pp. (2017) · Zbl 1371.90101
[13] Gao, P.; He, C.; Liu, Y., An adaptive family of projection methods for constrained monotone nonlinear equations with applications, Appl. Math. Comput., 359, 1-16 (2019) · Zbl 1429.65107
[14] Hu, W.; Wu, J.; Yuan, G., Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration, Appl. Numer. Math., 158, 360-376 (2020) · Zbl 1450.90028
[15] Hu, Y.; Wang, Y., An efficient projected gradient method for convex constrained monotone equations with applications in compressive sensing, J. Appl. Math. Phys., 8, 983-998 (2020)
[16] Ibrahim, A. H.; Isa, G. A.; Usman, H.; Abubakar, J.; Abubakar, A. B., Derivative-free RMIL conjugate gradient algorithm for convex constrained equations, Thai J. Math., 18, 1, 211-231 (2020)
[17] Kaelo, P.; Koorapetse, M., A globally convergent projection method for a system of nonlinear monotone equations, Int. J. Comput. Math. (2020) · Zbl 1432.90082
[18] Koorapetse, M.; Kaelo, P., Globally convergent three-term conjugate gradient projection methods for solving nonlinear monotone equations, Arab. J. Math., 7, 289-301 (2018) · Zbl 1412.90142
[19] Koorapetse, M.; Kaelo, P.; Offen, E. R., A scaled derivative-free projection method for solving nonlinear monotone equations, Bull. Iran. Math. Soc., 45, 755-770 (2019) · Zbl 1412.90141
[20] Li, D.; Fukushima, M., A global and superlinear convergent Gausi-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37, 152-172 (1999) · Zbl 0946.65031
[21] Liu, J. K.; Du, L., A gradient projection method for the sparse signal reconstruction in compressive sensing, Appl. Anal., 97, 12, 2122-2131 (2018) · Zbl 1395.90227
[22] Liu, J.; Feng, Y., A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algorithms, 82, 245-262 (2019) · Zbl 1431.65073
[23] Liu, J. K.; Xu, J. L.; Zhang, L. Q., Partially symmetrical derivative-free Liu-Storey projection method for convex constrained equations, Int. J. Comput. Math., 96, 1787-1798 (2019) · Zbl 1499.90221
[24] Luo, Z. Q.; Yu, W., An introduction to convex optimization for communications and signal processing, IEEE J. Sel. Areas Commun., 24, 8, 1426-1438 (2006)
[25] Ou, Y.; Li, J., A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints, J. Appl. Math. Comput., 56, 195-216 (2018) · Zbl 1390.90521
[26] Prajna, S.; Parrilo, P. A.; Rantzer, A., Nonlinear control synthesis by convex optimization, IEEE Trans. Autom. Control, 49, 2, 310-314 (2004) · Zbl 1365.93164
[27] Rivaie, M.; Mamat, M.; June, L.; Mohd, I., A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218, 11323-11332 (2012) · Zbl 1278.65094
[28] Sabiu, J.; Shah, A.; Waziri, M. Y., Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations, Appl. Numer. Math., 153, 217-233 (2020) · Zbl 07188144
[29] Solodov, M. V.; Svaiter, B. F., A globally convergent inexact newtown method for systems of monotone equations, (Fukushima, M.; Qi, L., Reformulation: Nonsmooth, Semismooth and Smoothing Methods. Reformulation: Nonsmooth, Semismooth and Smoothing Methods, Applied Optimization, vol. 22 (1998), Springer: Springer Boston, MA), 355-369 · Zbl 0928.65059
[30] Xiao, Y.; Zhu, H., A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405, 310-319 (2013) · Zbl 1316.90050
[31] Xiao, Y.; Wang, Q.; Hu, Q., Non-smooth equations based method for \(l_1\)-norm problems with applications to compressive sensing, Nonlinear Anal., Theory Methods Appl., 74, 3570-3577 (2011) · Zbl 1217.65069
[32] Yuan, G.; Yao, S., A BFGS algorithm for solving symmetric nonlinear equations, Optimization, 62, 85-99 (2013) · Zbl 1262.90141
[33] Yuan, G.; Li, T.; Hu, W., A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math., 147, 129-141 (2020) · Zbl 1433.90165
[34] Yuan, G.; Lu, J.; Wang, Z., The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems, Appl. Numer. Math., 152, 1-11 (2020) · Zbl 07173158
[35] Yuan, G.; Lu, X.; Wei, Z., BFGS trust-region method for symmetric nonlinear equations, J. Comput. Appl. Math., 230, 44-58 (2009) · Zbl 1168.65026
[36] Yuan, G.; Wei, Z.; Lu, X., A BFGS trust-region method for nonlinear equations, Computing, 92, 317-333 (2011) · Zbl 1241.65049
[37] Zhou, G.; Toh, K. C., Superliner convergence of a Newton-type algorithm for monotone equations, J. Optim. Theory Appl., 125, 205-221 (2005) · Zbl 1114.65055
[38] Zhou, W. J.; Li, D. H., Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 25, 89-96 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.