×

3D face recognition in the Fourier domain using deformed circular curves. (English) Zbl 1403.68219

Summary: One of the most significant problems in image and vision applications is the efficient representation of a target image containing a large amount of data with high complexity. The ability to analyze high dimensional signals in a lower dimension without losing their information, has been crucial in the field of image processing. This paper proposes an approach to 3D face recognition using dimensionality reduction based on deformed circular curves, on the shortest geodesic distances, and on the properties of the Fourier Transform. Measured geodesic distances information generates a matrix whose entities are geodesic distances between the reference point and an arbitrary point on a 3D object, and an one-dimensional vector is generated by reshaping the matrix without losing the original properties of the target object. Following the property of the Fourier Transform, symmetry of the magnitude response, the original signal can be analyzed in the lower dimensional space without loss of inherent characteristics. This paper mainly deal with the efficient representation and recognition algorithm using deformed circular curves and the simulation shows promising result for recognition of geometric face information.

MSC:

68T10 Pattern recognition, speech recognition
68T45 Machine vision and scene understanding
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aldroubi, A., & Grochenig, K. (2001). Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Review, 43(4), 585-620. · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[2] Aouada, D. & Krim, H. (2010). Squigraphs for fine and compact modeling of 3-D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19(2), 306-321. · Zbl 1371.68247
[3] Ballihi, L., Ben Amor, B., Daoudi, M., Srivastava, A. & Aboutajdine, D. (2012). Boosting 3-D geometric features for efficient face recognition and gender classification. IEEE Transactions on Information Forensic and Security, 7(6), 1766-1799.
[4] Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396. · Zbl 1085.68119 · doi:10.1162/089976603321780317
[5] Berretti, S., Del Bimbo, A., & Pala, P. (2010). 3D dace recognition using iso-geodesic stripes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2162-2177. · doi:10.1109/TPAMI.2010.43
[6] Borg, I. & Gronen, P. J. F. (2005). Modern multidimensional scaling-Theory and applications, Springer series in statistics (2nd ed.). New York: Springer-Verlag.
[7] Bowyer, K. W., Chang, K., & Flynn, P. (2006). A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 101(1), 1-15. · doi:10.1016/j.cviu.2005.05.005
[8] De Lathauwer, L., & Vandewalle, J. (2004). Dimensionality reduction in higher-order signal processing and rank-(R1, R2,., RN) reduction in multilinear algebra. Special Issue on Linear Algebra in Signal and Image Processing, 391, 31-55. · Zbl 1066.94001
[9] Demartines, P., Herault, J. (1997). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1), 148-154. · Zbl 1066.94001
[10] Donoho, D. L. (2006) Compressed sensing. IEEE Transaction on Information Theory, 52(4), 1289-1306. · Zbl 1288.94016
[11] Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285-1295. · doi:10.1109/TPAMI.2003.1233902
[12] Feng, S., Krim, H., & Kogan, I. A. (2007). 3D face recognition using Euclidean integral invariants signature. In IEEE/SP 14th Workshop on Statistical Signal Processing, 2007. SSP ’07, pp. 156-160
[13] Guillamet, D., Schiele B., & Vitria, J. (2002). Analyzing non-negative matrix factorization for image classification. In Proceedings of the 16th International Conference on Pattern Recognition. · Zbl 1047.68123
[14] Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16, 2639-2664. · Zbl 1062.68134 · doi:10.1162/0899766042321814
[15] He, X. & Niyogi, P. (2004). Locality preserving projections. In Proceedings of the NIPS, Advances in Neural Information Processing Systems (Vol. 16). Vancouver: MIT Press.
[16] Hou, C., Nie, F., Li, X., Yi, D., & Wu, Y. (2014). Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Transactions on Cybernetics, 44(6), 793-804.
[17] Huang, W. & Yin, H. (2009). Nonlinear dimensionality reduction for face recognition. IDEAL’09 Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, pp. 424-432.
[18] Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9, 1483-1492. · doi:10.1162/neco.1997.9.7.1483
[19] Jahanbin, S., Choi, H., Liu, Y. & Bovik, A. C. (2008). Three dimensional face recognition using iso-geodesic and iso-depth curves. In 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, 2008. BTAS 2008.
[20] Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480.
[21] Lee, D., & Krim, H. (2010). 3D surface reconstruction using structured circular light patterns. In ACIVS 2010. Part I, LNCS (Vol. 6474, pp. 279-289).
[22] Lee, D., & Krim, H. (2011). A sampling rate for a 2D surface. SSVM, LNCS, 6667,
[23] Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57, 49-76. · doi:10.1016/j.neucom.2004.01.007
[24] Liu, P., Wang, Y., Huang, D., Zhang, Z., & Chen, L. (2013). Learning the spherical harmonic features for 3-D face recognition. IEEE Transactions on Image Processing, 22(3), 914-925. · Zbl 1373.94257
[25] Liu, X., Wang, L., Zhang, J. & Liu, H. (2014). Global and local structure preservation for feature selection. IEEE Transaction on Neural Networks and Learning Systems, 25(6), 1083-1095.
[26] Miao S., & Krim, H. (2010). 3D face recognition based on evolution of iso-geodesic distance curves. In 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1134-1137.
[27] Mika, S., Ratsch, G., Weston, J., Scholkopf, B. & Muller, K.-R. (1999). Fisher discriminant analysis with kernels, neural networks for signal processing IX. In Proceedings of the 1999 IEEE Signal Processing Society Workshop.
[28] Oprea, J. (2007). Differential geometry and its applications (2nd ed.). The Mathematical Association of America (Incorporated): Pearson Education. · Zbl 1153.53001
[29] Roweis, S. T., & Saul L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
[30] Samir, C., Srivastava, A., & Daoudi, M. (2006). Three-dimensional face recognition using shape of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1858-1863. · doi:10.1109/TPAMI.2006.235
[31] Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear embedding. Florham Park, NJ: AT and T.
[32] Scholkopf, Bernhard, Smola, Alexander, & Muller, Klaus-Robert. (1997). Kernel principal component analysis, Artificial Neural Networks - ICANN’97. Lecture Notes in Computer Science, 1327, 583-588.
[33] Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319. · doi:10.1162/089976698300017467
[34] Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323. · Zbl 0955.37025 · doi:10.1126/science.290.5500.2319
[35] Turk, Matthew A. & Pentland, A. P. (1991) . Face recognition using eigenfaces. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586-591.
[36] Unser, M. (2000). Sampling—50 years after Shannon. Proceedings of the IEEE, 88(4), 569-587. · Zbl 1404.94028
[37] Vasuhi, S., & Vaidehi, V. (2009). Identification of human faces using orthogonal locality preserving projections. In International Conference on Signal Processing Systems.
[38] Wang, X., & Paliwal, K. K. (2003). Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recognition, 36(10), 2429-2439. · Zbl 1039.68114 · doi:10.1016/S0031-3203(03)00044-X
[39] Zhang, C., Wang, J., Zhao, N., & Zhang, D. (2004). Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 37(2), 325-336. · Zbl 1059.68124 · doi:10.1016/j.patcog.2003.07.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.