×

Deterministic epidemic models for Ebola infection with time-dependent controls. (English) Zbl 1459.92140

Summary: In this paper, we have studied epidemiological models for Ebola infection using nonlinear ordinary differential equations and optimal control theory. We considered optimal control analysis of SIR and SEIR models for the deadly Ebola infection using vaccination, treatment, and educational campaign as time-dependent control functions. We have applied indirect methods to study existing deterministic optimal control epidemic models for Ebola virus disease. These methods in optimal control are based on Hamiltonian function and Pontryagin’s maximum principle to construct adjoint equations and optimality systems. The forward-backward sweep numerical scheme with the fourth-order Runge-Kutta method is used to solve the optimality system for the various control strategies. From our numerical illustrations, we can conclude that effective educational campaigns and vaccination of susceptible individuals as well as effective treatments of infected individuals can help reduce the disease transmission.

MSC:

92D30 Epidemiology
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] WHO, Ebola Virus Disease (2019), Geneva, Switzerland: WHO, Geneva, Switzerland, https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
[2] Hethcote, H. W., The mathematics of infectious diseases, SIAM Review, 42, 4, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/s0036144500371907
[3] Tulu, T. W.; Tian, B.; Wu, Z., Mathematical modeling, analysis and Markov chain Monte Carlo simulation of ebola epidemics, Results in Physics, 7, 962-968 (2017) · doi:10.1016/j.rinp.2017.02.005
[4] Dong, F.; Xu, D.; Wang, Z.; Dong, M., Evaluation of ebola spreading in west africa and decision of optimal medicine delivery strategies based on mathematical models, Infection, Genetics and Evolution, 36, 35-40 (2015) · doi:10.1016/j.meegid.2015.09.003
[5] Althaus, C. L., Estimating the reproduction number of ebola virus (ebov) during the 2014 outbreak in West Africa, PLoS Currents, 6 (2014) · doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
[6] Chowell, G.; Nishiura, H., Transmission dynamics and control of ebola virus disease (evd): a review, BMC Medicine, 12, 1, 196 (2014) · doi:10.1186/s12916-014-0196-0
[7] Ngwa, G. A.; Teboh-Ewungkem, M. I., A mathematical model with quarantine states for the dynamics of ebola virus disease in human populations, Computational and Mathematical Methods in Medicine, 2016 (2016) · Zbl 1359.92108 · doi:10.1155/2016/9352725
[8] Weitz, J. S.; Dushoff, J., Modeling post-death transmission of ebola: challenges for inference and opportunities for control, Scientific Reports, 5, 1, 8751 (2015) · doi:10.1038/srep08751
[9] Ndanguza, D.; Mbalawata, I. S.; Haario, H.; Tchuenche, J. M., Analysis of bias in an ebola epidemic model by extended kalman filter approach, Mathematics and Computers in Simulation, 142, 113-129 (2017) · Zbl 07313876 · doi:10.1016/j.matcom.2017.05.005
[10] Diaz, P.; Constantine, P.; Kalmbach, K.; Jones, E.; Pankavich, S., A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation, Applied Mathematics and Computation, 324, 141-155 (2018) · Zbl 1426.92072 · doi:10.1016/j.amc.2017.11.039
[11] Atangana, A.; Goufo, E. F. D., On the mathematical analysis of ebola hemorrhagic fever: deathly infection disease in west african countries, BioMed Research International, 2014 (2014) · doi:10.1155/2014/261383
[12] Jiang, S.; Wang, K.; Li, C., Mathematical models for devising the optimal ebola virus disease eradication, Journal of Translational Medicine, 15, 1, 124 (2017) · doi:10.1186/s12967-017-1224-6
[13] Berge, T.; Lubuma, J. M.-S.; Moremedi, G. M.; Morris, N.; Kondera-Shava, R., A simple mathematical model for ebola in africa, Journal of Biological Dynamics, 11, 1, 42-74 (2017) · Zbl 1448.92276 · doi:10.1080/17513758.2016.1229817
[14] Xia, Z.-Q.; Wang, S.-F.; Li, S.-L., Modeling the transmission dynamics of ebola virus disease in Liberia, Scientific Reports, 5, 1 (2015) · doi:10.1038/srep13857
[15] Khan, A.; Naveed, M.; Dur-e-Ahmad, M.; Imran, M., Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone, Infectious Diseases of Poverty, 4, 1, 13 (2015) · doi:10.1186/s40249-015-0043-3
[16] Chowell, G.; Hengartner, N. W.; Castillo-Chavez, C.; Fenimore, P. W.; Hyman, J. M., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, Journal of Theoretical Biology, 229, 1, 119-126 (2004) · Zbl 1440.92062 · doi:10.1016/j.jtbi.2004.03.006
[17] Goufo, E. F. D.; Pene, M. K.; Mugisha, S., Stability analysis of epidemic models of ebola hemorrhagic fever with non-linear transmission, Journal of Nonlinear Sciences & Applications (JNSA), 9, 6, 4191-4205 (2016) · Zbl 1345.92139 · doi:10.22436/jnsa.009.06.61
[18] Agusto, F. B.; Teboh-Ewungkem, M. I.; Gumel, A. B., Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 ebola outbreaks, BMC Medicine, 13, 1, 96 (2015) · doi:10.1186/s12916-015-0318-3
[19] Luo, D.; Zheng, R.; Wang, D., Effect of sexual transmission on the west africa ebola outbreak in 2014: a mathematical modelling study, Scientific Reports, 9, 1 (2019) · doi:10.1038/s41598-018-38397-3
[20] Dénes, A.; Gumel, A. B., Modeling the impact of quarantine during an outbreak of ebola virus disease, Infectious Disease Modelling, 4, 12-27 (2019) · doi:10.1016/j.idm.2019.01.003
[21] Sharomi, O.; Malik, T., Optimal control in epidemiology, Annals of Operations Research, 251, 1-2, 55-71 (2017) · Zbl 1373.92140 · doi:10.1007/s10479-015-1834-4
[22] Zakary, O.; Rachik, M.; Elmouki, I., A multi-regional epidemic model for controlling the spread of ebola: awareness, treatment, and travel-blocking optimal control approaches, Mathematical Methods in the Applied Sciences, 40, 4, 1265-1279 (2017) · Zbl 1360.92123 · doi:10.1002/mma.4048
[23] Bonyah, E.; Badu, K.; Asiedu-Addo, S. K., Optimal control application to an ebola model, Asian Pacific Journal of Tropical Biomedicine, 6, 4, 283-289 (2016) · doi:10.1016/j.apjtb.2016.01.012
[24] Ahmad, M. D.; Usman, M.; Khan, A.; Imran, M., Optimal control analysis of ebola disease with control strategies of quarantine and vaccination, Infectious Diseases of Poverty, 5, 1, 72 (2016) · doi:10.1186/s40249-016-0161-6
[25] Area, I.; Ndaïrou, F.; NdaÏrou, F.; Nieto, J. J.; Silva, C. J., Ebola model and optimal control with vaccination constraints, Journal of Industrial & Management Optimization, 14, 2, 427-446 (2018) · Zbl 1412.49005 · doi:10.3934/jimo.2017054
[26] Grigorieva, E. V.; Deignan, P. B.; Khailov, E. N., Optimal control problem for a seir type model of ebola epidemics, Revista de Matemática: Teoría y Aplicaciones, 24, 1, 79-96 (2017) · Zbl 1373.92121 · doi:10.15517/rmta.v24i1.27771
[27] Bonyah, E.; Khan, M. A.; Okosun, K. O.; Islam, S., A theoretical model for zika virus transmission, PLoS One, 12, 10 (2017) · doi:10.1371/journal.pone.0185540
[28] Khan, M. A.; Shah, S. W.; Ullah, S.; Gómez-Aguilar, J. F., A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Analysis: Real World Applications, 50, 144-170 (2019) · Zbl 1430.92045 · doi:10.1016/j.nonrwa.2019.04.006
[29] Miyaoka, T. Y.; Lenhart, S.; Meyer, J. C. A., Optimal control of vaccination ina vector-borne reaction-diffusion model applied to zika virus, Journal of Mathematical Biology, 79, 3, 1077-1104 (2019) · Zbl 1425.92179 · doi:10.1002/oca.2483
[30] Bonyah, E.; Khan, M. A.; Okosun, K. O.; Gómez-Aguilar, J. F., On the co-infection of dengue fever and Zika virus, Optimal Control Applications and Methods, 40, 3, 394-421 (2019) · Zbl 1425.92179
[31] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models (2007), Boca Raton, FL, USA: Chapman and Hall/CRC, Boca Raton, FL, USA · Zbl 1291.92010
[32] Rachah, A.; Torres, D. F. M., Mathematical modelling, simulation, and optimal control of the 2014 ebola outbreak in West Africa, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.92188 · doi:10.1155/2015/842792
[33] Rachah, A.; Torres, D. F. M., Dynamics and optimal control of ebola transmission, Mathematics in Computer Science, 10, 3, 331-342 (2016) · Zbl 1352.49042 · doi:10.1007/s11786-016-0268-y
[34] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishchenko, E. F., The Mathematical Theory of Optimal Processes (1962), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0102.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.