×

Azimuthal capillary waves on a hollow filament – the discrete and the continuous spectrum. (English) Zbl 1430.76160

Summary: We study the temporal spectrum of linearised, azimuthal, interfacial perturbations imposed on a cylindrical gaseous filament surrounded by immiscible, viscous, quiescent fluid in radially unbounded geometry. Linear stability analysis shows that the base state is stable to azimuthal perturbations of standing wave form. Normal mode analysis leads to a viscous dispersion relation and shows that in addition to the discrete spectrum, the problem also admits a continuous spectrum. For a given azimuthal Fourier mode and Laplace number, the discrete spectrum yields two eigenfunctions which decay exponentially to zero at large radii and thus cannot represent far field perturbations. In addition to these discrete modes, we find an uncountably infinite set of eigenmodes which decay algebraically to zero. The completeness theorem for perturbation vorticity may be expressed as a sum over the discrete modes and an integral over the continuous ones. We validate our normal mode results by solving the linearised, initial value problem (IVP). The initial perturbation is taken to be an interfacial, azimuthal Fourier mode with zero perturbation vorticity. It is shown that the expression for the time dependent amplitude of a capillary standing wave (in the Laplace domain, \(s)\) has poles and branch points on the complex \(s\) plane. We show that the residue at the poles yields the discrete spectrum, while the contribution from either side of the branch cut provides the continuous spectrum contribution. The particular initial condition treated here in the IVP, has projections on the discrete as well as the continuous spectrum eigenmodes and thus both sets are excited initially. Consequently the time evolution of the standing wave amplitude and the perturbation vorticity field have the form of a sum over discrete exponential contributions and an integral over a continuous range of exponential terms. The solution to the IVP leads to explicit analytical expressions for the standing wave amplitude and the vorticity field in the fluid outside the filament. Linearised analytical results are validated using direct numerical simulations (DNS) conducted using a code developed in-house for solving the incompressible, Navier-Stokes equations with an interface. For small perturbation amplitude, analytical predictions show excellent agreement with DNS. Our analysis complements and extends earlier results on the discrete and the continuous spectrum for interfacial viscous, capillary waves on unbounded domain.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M. & Stegun, I. A.1965Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation. · Zbl 0171.38503
[2] Bauer, H. F.1984Natural damped frequencies of an infinitely long column of immiscible viscous liquids. Z. Angew. Math. Mech.64 (11), 475-490. · Zbl 0564.76080
[3] Bechtel, S. E., Cooper, J. A., Forest, M. G., Petersson, N. A., Reichard, D. L., Saleh, A. & Venkataramanan, V.1995A new model to determine dynamic surface tension and elongational viscosity using oscillating jet measurements. J. Fluid Mech.293, 379-403. · Zbl 0850.76164
[4] Berger, S. A.1988Initial-value stability analysis of a liquid jet. SIAM J. Appl. Maths48 (5), 973-991. · Zbl 0652.76036
[5] Bohr, N.1909Determination of the surface-tension of water by the method of jet-vibration. Phil. Trans. R. Soc. Lond. A209, 281-317. · JFM 40.0862.01
[6] Brackbill, J. U., Kothe, D. B. & Zemach, C.1992A continuum method for modeling surface tension. J. Comput. Phys.100 (2), 335-354. · Zbl 0775.76110
[7] Case, K. M.1960Stability of inviscid plane couette flow. Phys. Fluids3 (2), 143-148. · Zbl 0213.54306
[8] Castro-Hernández, E., Van Hoeve, W., Lohse, D. & Gordillo, J. M.2011Microbubble generation in a co-flow device operated in a new regime. Lab on a Chip11 (12), 2023-2029.
[9] Chandrasekhar, S1981Hydrodynamic and Hydromagnetic Stability. Courier Corporation.
[10] Chorin, A. J.1968Numerical solution of the Navier-Stokes equations. Maths Comput.22 (104), 745-762. · Zbl 0198.50103
[11] Cortelezzi, L. & Prosperetti, A.1981Small-amplitude waves on the surface of a layer of a viscous liquid. Q. Appl. Maths38 (4), 375-389. · Zbl 0464.76034
[12] Deike, L., Popinet, S. & Melville, W. K.2015Capillary effects on wave breaking. J. Fluid Mech.769, 541-569. · Zbl 1431.76031
[13] Eggers, J. & Villermaux, E.2008Physics of liquid jets. Rep. Prog. Phys.71 (3), 036601.
[14] Farsoiya, P. K., Mayya, Y. S. & Dasgupta, R.2017Axisymmetric viscous interfacial oscillations-theory and simulations. J. Fluid Mech.826, 797-818. · Zbl 1430.76156
[15] Friedman, B.1990Principles and Techniques of Applied Mathematics. Courier Dover Publications. · Zbl 1227.00033
[16] Fyfe, D. E., Oran, E. S. & Fritts, M. J.1988Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh. J. Comput. Phys.76 (2), 349-384. · Zbl 0639.76043
[17] García, F. J. & González, H.2008Normal-mode linear analysis and initial conditions of capillary jets. J. Fluid Mech.602, 81-117. · Zbl 1140.76009
[18] Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M.2006Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up. Lab on a Chip6 (3), 437-446.
[19] Gordillo, J. M., Gañán-Calvo, A. M. & Pérez-Saborid, M.2001Monodisperse microbubbling: absolute instabilities in coflowing gas-liquid jets. Phys. Fluids13 (12), 3839-3842. · Zbl 1184.76190
[20] Grosch, C. E. & Salwen, H.1978The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech.87 (1), 33-54. · Zbl 0383.76031
[21] Hirt, C. W. & Nichols, B. D.1981Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys.39 (1), 201-225. · Zbl 0462.76020
[22] Jordinson, R.1971Spectrum of eigenvalues of the Orr-Sommerfeld equation for Blasius flow. Phys. Fluids14 (11), 2535-2537.
[23] Kalland, K. M.2008 A Navier-Stokes solver for single-and two-phase flow. Master’s thesis, University of Oslo.
[24] Kalliadasis, S. & Homsy, G. M.2001Stability of free-surface thin-film flows over topography. J. Fluid Mech.448, 387-410. · Zbl 1045.76017
[25] Lamb, H.1993Hydrodynamics. Cambridge University Press.
[26] Leal, L. G.2007Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press. · Zbl 1133.76001
[27] Liang, X., Deng, D. S., Nave, J.-C. & Johnson, S. G.2011Linear stability analysis of capillary instabilities for concentric cylindrical shells. J. Fluid Mech.683, 235-262. · Zbl 1241.76214
[28] Lin, S.-P.2003Breakup of Liquid Sheets and Jets. Cambridge University Press. · Zbl 1074.76001
[29] Lörstad, D. & Fuchs, L.2004High-order surface tension VOF-model for 3D bubble flows with high density ratio. J. Comput. Phys.200 (1), 153-176. · Zbl 1288.76083
[30] Mack, L. M.1976A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech.73 (3), 497-520. · Zbl 0339.76030
[31] Malan, L. C., Ling, Y., Scardovelli, R., Llor, A. & Zaleski, S.2019Detailed numerical simulations of pore competition in idealized micro-spall using the VOF method. Comput. Fluids189, 60-72. · Zbl 1519.76181
[32] Mao, X. & Sherwin, S.2011Continuous spectra of the Batchelor vortex. J. Fluid Mech.681, 1-23. · Zbl 1241.76141
[33] 2018 MATLAB and Statistics Toolbox Release 2018b. Natick, Massachusetts: The MathWorks Inc.
[34] Meister, B. J. & Scheele, G. F.1967Generalized solution of the Tomotika stability analysis for a cylindrical jet. AIChE J.13 (4), 682-688.
[35] Miles, J. W.1968The Cauchy-Poisson problem for a viscous liquid. J. Fluid Mech.34 (2), 359-370. · Zbl 0165.58001
[36] Moin, P.2010Fundamentals of Engineering Numerical Analysis. Cambridge University Press. · Zbl 1228.65003
[37] Moon, S., Shin, Y., Kwak, H., Yang, J., Lee, S.-B., Kim, S. & An, K.2016Experimental observation of Bohrs nonlinear fluidic surface oscillation. Sci. Rep.6, 19805.
[38] Netzel, D. A., Hoch, G. & Marx, T. I.1964Adsorption studies of surfactants at the liquid-vapor interface: apparatus and method for rapidly determining the dynamic surface tension. J. Colloid Sci.19 (9), 774-785.
[39] Parnes, R.1972Complex zeros of the modified Bessel function K_n(Z). Maths Comput.26, 949-953. · Zbl 0261.65039
[40] Parthasarathy, R. N. & Chiang, K.-M.1998Temporal instability of gas jets injected in viscous liquids to three-dimensional disturbances. Phys. Fluids10 (8), 2105-2107.
[41] Patankar, S.1980Numerical Heat Transfer and Fluid Flow. CRC Press. · Zbl 0521.76003
[42] Patankar, S., Farsoiya, P. K. & Dasgupta, R.2018Faraday waves on a cylindrical fluid filament-generalised equation and simulations. J. Fluid Mech.857, 80-110. · Zbl 1415.76091
[43] Pederson, P. O.1907On the surface-tension of liquids investigated by the method of jet vibration. Proc. R. Soc. Lond. A80 (535), 26-27.
[44] Plateau, J. A. F.1873Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol. 2. Gauthier-Villars. · JFM 06.0516.03
[45] Prosperetti, A.1976Viscous effects on small-amplitude surface waves. Phys. Fluids19 (2), 195-203. · Zbl 0347.76007
[46] Prosperetti, A.1980aFree oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech.100 (2), 333-347. · Zbl 0445.76086
[47] Prosperetti, A.1980bNormal-mode analysis for the oscillations of a viscous-liquid drop in an immiscible liquid. J. Méc.19 (1), 149-182. · Zbl 0443.76048
[48] Prosperetti, A.1981Motion of two superposed viscous fluids. Phys. Fluids24 (7), 1217-1223. · Zbl 0469.76035
[49] Prosperetti, A.2011Advanced Mathematics for Applications. Cambridge University Press. · Zbl 1208.00002
[50] Prosperetti, A. & Cortelezzi, L.1982Small-amplitude waves produced by a submerged vorticity distribution on the surface of a viscous liquid. Phys. Fluids25 (12), 2188-2192. · Zbl 0509.76034
[51] Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. & Rider, W. J.1997A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys.130 (2), 269-282. · Zbl 0872.76065
[52] Rayleigh, Lord1878On the instability of jets. Proc. Lond. Math. Soc.1 (1), 4-13. · JFM 11.0685.01
[53] Rayleigh, Lord1879On the capillary phenomena of jets. Proc. R. Soc. Lond.29 (196-199), 71-97.
[54] Rayleigh, Lord1889On the tension of recently formed liquid surfaces. Proc. R. Soc. Lond.47, 281-287.
[55] Rayleigh, Lord1892aOn the instability of cylindrical fluid surfaces. Phil. Mag.34 (5), 177-180. · JFM 24.0972.04
[56] Rayleigh, Lord1892bXvi. On the instability of a cylinder of viscous liquid under capillary force. Lond. Edin. Dublin Phil. Mag. J. Sci.34 (207), 145-154. · JFM 24.0972.03
[57] Ronay, M.1978Determination of the dynamic surface tension of liquids from the instability of excited capillary jets and from the oscillation frequency of drops issued from such jets. Proc. R. Soc. Lond. A361 (1705), 181-206.
[58] Roy, A. & Subramanian, G.2014aAn inviscid modal interpretation of the lift-upeffect. J. Fluid Mech.757, 82-113. · Zbl 1329.76123
[59] Roy, A. & Subramanian, G.2014bLinearized oscillations of a vortex column: the singular eigenfunctions. J. Fluid Mech.741, 404-460. · Zbl 1325.76051
[60] Salwen, H. & Grosch, C. E.1981The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech.104, 445-465. · Zbl 0467.76051
[61] Scardovelli, R. & Zaleski, S.2000Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys.164 (1), 228-237. · Zbl 0993.76067
[62] Shu, C.2009High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev.51 (1), 82-126. · Zbl 1160.65330
[63] Singh, M., Farsoiya, P. K. & Dasgupta, R.2019Test cases for comparison of two interfacial solvers. Intl J. Multiphase Flow115, 75-92.
[64] Stone, H. A. & Brenner, M. P.1996Note on the capillary thread instability for fluids of equal viscosities. J. Fluid Mech.318, 373-374. · Zbl 0875.76136
[65] Tomotika, S.1935On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A150 (870), 322-337. · JFM 61.1539.01
[66] Tryggvason, G., Scardovelli, R. & Zaleski, S.2011Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press. · Zbl 1226.76001
[67] Van Hoeve, W., Dollet, B., Gordillo, J. M., Versluis, M., Van Wijngaarden, L. & Lohse, D.2011Bubble size prediction in co-flowing streams. Europhys. Lett.94 (6), 64001.
[68] Van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D.2010Breakup of diminutive Rayleigh jets. Phys. Fluids22 (12), 122003.
[69] 2016 Mathematica version 11. .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.