×

Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients. (English) Zbl 07508363

Summary: In this article, we develop and analyze two energy-preserving high-order average vector field (AVF) compact finite difference schemes for solving variable coefficient nonlinear wave equations with periodic boundary conditions. Specifically, we first consider the variable coefficient nonlinear wave equation as an infinite-dimensional Hamiltonian system. Then the fourth-order compact finite difference and AVF techniques are applied to the resulting Hamiltonian system for the spatial discretization and time integration, respectively, which yield two energy-preserving high-order schemes, one is a time second-order AVF compact finite difference scheme (AVF(2)-CFD) and the other is a time fourth-order AVF compact finite difference scheme (AVF(4)-CFD). We theoretically prove that the proposed schemes satisfy energy conservations in the discrete forms and are uniquely solvable. Also, we prove the convergence of the proposed schemes and their error estimates, where the AVF(4)-CFD scheme is of fourth-order convergence in both time and space. Numerical experiments for the nonlinear wave equations with various nonlinearities are given to show their performances, which confirm the theoretical results.

MSC:

65-XX Numerical analysis
35-XX Partial differential equations

Software:

NewtonLib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aktosun, T.; Demontis, F.; Der Mee, C. V., Exact solutions to the sine-Gordon equation, J. Math. Phys., 51, Article 123521 pp. (2010) · Zbl 1314.35158
[2] Argyris, J.; Haase, M.; Heinrich, J. C., Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng., 86, 1-26 (1991) · Zbl 0762.65073
[3] Barbu, V.; Pavel, N. H., Periodic solutions to nonlinear one dimensional wave equation with x-dependent coefficients, Trans. Am. Math. Soc., 349, 2035-2048 (1997) · Zbl 0880.35073
[4] Britt, S.; Turkel, E.; Tsynkov, S. A., High order compact time/space finite difference scheme for the wave equation with variable speed of sound, J. Sci. Comput., 76, 777-811 (2018) · Zbl 1397.65131
[5] Celledoni, E.; Grimm, V.; McLachlan, R. I.; McLaren, D. I.; O’Neale, D.; Owren, B.; Quispel, G. R.W., Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, J. Comput. Phys., 231, 6770-6789 (2012) · Zbl 1284.65184
[6] Celledoni, E.; McLachlan, R. I.; Owren, B.; Quispel, G. R.W., Energy-preserving integrators and the structure of B-series, Found. Comput. Math., 10, 673-693 (2010) · Zbl 1205.65325
[7] Chen, W.; Wang, C.; Wang, X.; Wise, S. M., A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 59, 574-601 (2014) · Zbl 1305.82034
[8] Dahlby, M.; Owren, B., A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340 (2011) · Zbl 1246.65240
[9] Dauxois, T.; Peyrard, M., Physics of Solitons (2006), Cambridge University Press · Zbl 1192.35001
[10] Dehghan, M.; Mohebbi, A.; Asgari, Z., Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algorithms, 52, 523-540 (2009) · Zbl 1180.65114
[11] Dehghan, M.; Shokri, A., A numerical method for one-dimensional nonlinear Sine-Gordon equation using collocation and radial basis functions, Numer. Methods Partial Differ. Equ., 24, 687-698 (2008) · Zbl 1135.65380
[12] Deng, D.; Liang, D., The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329, 188-209 (2018) · Zbl 1427.65157
[13] Deuflhard, P., Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer Ser. Comput. Math., vol. 35 (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1056.65051
[14] Dodd, R. K.; Eilbeck, I. C.; Gibbon, J. D.; Morris, H. C., Soliton and Nonlinear Wave Equations (1982), Academic Press: Academic Press London · Zbl 0496.35001
[15] Duncan, D. B., Sympletic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34, 1742-1760 (1997) · Zbl 0889.65093
[16] Feng, J.; Kneubuhl, F. K., Solitons in a periodic structure with Kerr nonlinearity, IEEE J. Quantum Electron., 29, 590-597 (1993)
[17] Feng, X.; Liu, H.; Ma, S., Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations, Commun. Comput. Phys., 26, 1365-1396 (2019) · Zbl 1473.65102
[18] Gutman, S., Fréchet differentiability for a damped sine-Gordon equation, J. Math. Anal. Appl., 360, 503-517 (2009) · Zbl 1185.35323
[19] Hirsh, R. S., Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19, 90-109 (1975) · Zbl 0326.76024
[20] Jagtap, A. D.; Vasudeva Murthy, A. S., Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing, Commun. Nonlinear Sci. Numer. Simul., 64, 178-197 (2018) · Zbl 1508.65141
[21] Jiménez, S.; Vázquez, L., Analysis of four numerical schemes for a nonlinear Klein-Gordon equation, Appl. Math. Comput., 35, 61-94 (1990) · Zbl 0697.65090
[22] Karasözen, B.; Simsek, G., Energy preserving integration of bi-Hamiltonian partial differential equations, Appl. Math. Lett., 26, 1125-1133 (2013) · Zbl 1308.35249
[23] Kaya, D.; El-Sayed, S. M., A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156, 341-353 (2004) · Zbl 1084.65101
[24] Kobeissi, H.; Ghannouchi, F. M.; Khebir, A., Finite element solution of the nonlinear Poisson equation for semiconductor devices using the fixed-point iteration method, J. Appl. Phys., 74, 6186 (1993)
[25] Li, S.; Vu-Quoc, L., Finite difference calculus structure of a class of algorithm for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 1839-1875 (1995) · Zbl 0847.65062
[26] Liang, D.; Zhou, Z., The conservative splitting domain decomposition method for multicomponent contamination flows in porous media, J. Comput. Phys., 400, Article 108974 pp. (2020) · Zbl 1453.65305
[27] Liao, W.; Yong, P.; Dastour, H.; Huang, J., Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput., 321, 385-400 (2018) · Zbl 1426.76475
[28] McLachlan, R. I.; Quispel, G. R.W.; Robidoux, N., Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond., 357, 1021-1045 (1999) · Zbl 0933.65143
[29] Moghaderi, H.; Dehghan, M., A multigrid compact finite difference method for solving the one-dimensional nonlinear sine-Gordon equation, Math. Methods Appl. Sci., 38, 3901-3922 (2016) · Zbl 1335.35219
[30] Mohebbi, A.; Dehghan, M., High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Model., 51, 537-549 (2010) · Zbl 1190.65126
[31] Quispel, G. R.W.; Mclaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A, Math. Theor., 41, Article 045206 pp. (2008) · Zbl 1132.65065
[32] Scott, A., Nonlinear Science: Emergence and Dynamics of Coherent Structures (2003), Oxford University Press · Zbl 1072.35003
[33] Vu-Quoc, L.; Li, S., Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation, Comput. Methods Appl. Mech. Eng., 107, 341-391 (1993) · Zbl 0790.65101
[34] Wang, L.; Chen, W.; Wang, C., An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term, J. Comput. Appl. Math., 280, 347-366 (2015) · Zbl 1307.35168
[35] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382-399 (2013) · Zbl 1349.65347
[36] Wazwaz, A. M., Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos Solitons Fractals, 28, 127-135 (2006) · Zbl 1088.35544
[37] Wazwaz, A. M., The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167, 1179-1195 (2005) · Zbl 1082.65584
[38] Whitham, G. B., Linear and Nonlinear Waves (1999), Wiley: Wiley New York · Zbl 0940.76002
[39] Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44, 38-68 (2010) · Zbl 1203.76153
[40] Zhou, Y., Application of Discrete Functional Analysis to the Finite Difference Methods (1990), International Academic Publishers: International Academic Publishers Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.