×

Practical scheme of reduction to gauge-invariant variables. (English. Russian original) Zbl 0932.53050

Theor. Math. Phys. 109, No. 1, 1316-1328 (1996); translation from Teor. Mat. Fiz. 109, No. 1, 90-106 (1996).
Summary: For systems with first-class constraints, the reduction scheme to gauge-invariant variables is considered. The method is based on an analysis of restricted 1-forms in gauge-invariant variables. This scheme is applied to the models of electrodynamics and Yang-Mills theory. For the finite-dimensional model with the \(SU(2)\) gauge group of symmetry, a possible mechanism of confinement is obtained.

MSC:

53Z05 Applications of differential geometry to physics
81T13 Yang-Mills and other gauge theories in quantum field theory
53D50 Geometric quantization
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. A. M. Dirac,Lectures on Quantum Mechanics (Belfer Graduate School of Science), Yeshiva University, New York (1964).
[2] L. D. Faddeev,Theor. Math. Phys.,1, 3 (1969). · Zbl 1183.81090 · doi:10.1007/BF01028566
[3] K. Sundermeyer,Lecture Notes in Physics, Vol. 169,Constrained Dynamics, Springer, Berlin-Heidelberg-New York (1982). · Zbl 0508.58002
[4] M. Henneaux and C. Teitelboim,Quantization of Gauge Systems, Princeton Univ. Press, Princeton (1992). · Zbl 0838.53053
[5] L. Lusanna, ”Classical Yang-Mills theory with fermions. I. General properties of a system with constraints; II. Dirac’s observables,” to appear inInt. J. Mod. Phys A; ”Aspects of Galilean and relativistic particle mechanics with Dirac’s constraints,” Talk given at the Conference ”Theories of Fundamental Interactions,” Maynooth, Ireland (1995).
[6] K. Kuchar,Phys. Rev. D,34, 3031 (1986); 3044;35, 596 (1987); R. Loll,Phys. Rev. D.,41, 3785 (1990); G. Kunstatter, ”Dirac’s vs. Reduced Quantization: a Geometrical Approach,” Preprint LPTHE, Orsay (1991). · doi:10.1103/PhysRevD.34.3031
[7] L. D. Faddeev and A. A. Slavnov,Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow (1984). · Zbl 0663.53060
[8] V. N. Gribov,Nucl. Phys. B.,139, 1 (1978). · doi:10.1016/0550-3213(78)90175-X
[9] V. P. Pavlov and A. O. Starinetz, ”Phase space geometry for constrained systems,” Talk given at the meeting on ”Constrained Dynamics and Quantum Gravity,” Dubna (1995). · Zbl 0925.70156
[10] S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin, ”On Admissible Gaugres for Constrained Systems,” Preprint JINR ZU-TH-4/95, Dubna (1995).
[11] L. Faddeev and R. Jackiw,Phys. Rev. Lett.,60, 1692 (1988); R. Jackiw,(Constrained) Quantization Without Tears, Montepulciano, Italy (1993). · Zbl 1129.81328 · doi:10.1103/PhysRevLett.60.1692
[12] G. Jorjadze and I. Sarishvili,Theor. Math. Phys.,93, 1239 (1993); G. Jorjadze, G. Lavrelashvili and I. Sarishvili,J. Phys. A,26, 751 (1993).
[13] F. A. Berezin,Commun. Math. Phys.,40, 153 (1975). · Zbl 1272.53082 · doi:10.1007/BF01609397
[14] N. M. J. Woodhaus,Geometric Quantization, Clarendon, Oxford (1992).
[15] E. S. Fradkin and V. Ya. Linetski, ”BFV Quantization on Hermitian symmetric spaces,” Preprint IC/94/593. · Zbl 0990.81532
[16] M. S. Plyushchay,Nucl. Phys. B,362, 54 (1991). · doi:10.1016/0550-3213(91)90555-C
[17] P. A. M. Dirac,Can. J. Phys.,33, 650 (1955).
[18] A. Khvedelidze and V. Pervushin,Helv. Phys. Acta,67 (1994).
[19] Yu. A. Kuznetsov and M. S. Plyushchay,Nucl. Phys. B,389, 181 (1993); G. Jerjadze, L. O’Raileaigh and I. Tsutsui,Phys. Lett. B.,336, 388 (1994). · doi:10.1016/0550-3213(93)90290-6
[20] P. Carruthers and M. Nieto,Rev. Mod. Phys.,40, 411 (1968). · doi:10.1103/RevModPhys.40.411
[21] L. V. Prokhorov,Fiz. Elem. Chast. Atomn. Yadra,25, 559 (1994).
[22] A. M. Perelomov,Integrable Systems of Classical Mechanics and Lie Algebras, Birkhauser, Basel (1990). · Zbl 0717.70003
[23] I. Bars,Phys. Rev. Lett.,40, 688 (1978); I. Bars and F. Green,Nucl. Phys. B,139, 445 (1978). · doi:10.1103/PhysRevLett.40.688
[24] J. Goldstone and R. Jackiw,Phys. Lett. B,74, 81 (1978). · doi:10.1016/0370-2693(78)90065-5
[25] A. G. Izergin, V. E. Korepin, M. A. Semenov-Tyan-Schanskii, and L. D. Faddeev,Theor. Math. Phys.,38, 1 (1979). · doi:10.1007/BF01030251
[26] P. A. M. Dirac,Can. J. Math.,2, 129 (1950). · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[27] A. Ashtekar and R. S. Tate, ”An algebraic extension of Dirac quantization: Examples,” Preprint gr-qc/9405073CGPG-94/6-1 (1994).
[28] C. Becchi, A. Rouet, and R. Stora,Commun. Math. Phys.,42, 127 (1975); I. V. Tyutin, Preprint No. 39, FIAN. Moscow (1975). · doi:10.1007/BF01614158
[29] E. S. Fradkin and V. Ya. Linetski,Nucl. Phys. B,431, 569 (1994). · Zbl 1020.37518 · doi:10.1016/0550-3213(94)90216-X
[30] G. W. Mackey,Induced Representations of Groups and Quantum Mechanics, Benjamin, New York (1969). · Zbl 0174.28101
[31] D. McMillan and I. Tsutsui, ”BRST instanton and spin from inequivalent quantizations,” Preprint DIAS-STP-93-21, Dublin (1993).
[32] C. J. Isham, in:Relativity Groups and Topology II. Proceedings of the Les Houches Summer School, Les Houches, France (1983). · Zbl 0523.58021
[33] S. Deser, R. Jackiw, and S. Templeton,Ann. Phys.,140, 372 (1982). · doi:10.1016/0003-4916(82)90164-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.