×

Compatibility and Schur complements of operators on Hilbert \(C^*\)-module. (English) Zbl 1218.46034

The authors generalize the definitions of \(S\)-complementability and \(S\)-compatibility for operators from Hilbert spaces to Hilbert \(C^*\)-modules as follows. Let \(E\) be a Hilbert \(C^*\)-module and \(S\) be an orthogonally complemented closed submodule of \(E\). An adjointable operator \(T\) on \(E\) is called \(S\)-complementable if there exist adjointable operators \(M_l, M_r\) on \(E\) such that \(P_SM_r = M_r, M_lP_S = M_l\), \(P_STM_r = P_ST\), \(M_lTP_S = TP_S\), where \(P_S\) is the projection onto \(S\). The pair \((A, S)\), where \(A\) is an adjointable operator on \(E\), is called \(S\)-compatible if there exists an idempotent \(Q\) with range \(S\) such that \(\langle Qx, y\rangle_A= \langle x, Qy\rangle_A\), where \(\langle x, y\rangle_A:=\langle Ax, y\rangle\).
The authors present several equivalent statements about \(S\)-complementability and \(S\)-compatibility, and several representations of Schur complements of \(S\)-complementable operators on a Hilbert \(C^*\)-module. They also investigate the quotient property for Schur complements of \(S\)-complementable operators on a Hilbert \(C^*\)-module.

MSC:

46L08 \(C^*\)-modules
46L05 General theory of \(C^*\)-algebras
26D99 Inequalities in real analysis
46C99 Inner product spaces and their generalizations, Hilbert spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, W. N. and Trapp, G. E., Shorted operators II, SIAM J. Appl. Math., 28, 1975, 60–71. · Zbl 0295.47032 · doi:10.1137/0128007
[2] Ando, T., Generalized Schur complements, Linear Algebra Appl., 27, 1979, 173–186. · Zbl 0412.15006 · doi:10.1016/0024-3795(79)90040-5
[3] Andruchow, E., Corach, G. and Stojanoff, D., Geometry of oblique projections, Studia Math., 137, 1999, 61–79. · Zbl 0951.46028
[4] Brezinski, C. and Redivo-Zaglia, M., A Schur complement approach to a general extrapolation algorithm, Linear Algebra Appl., 368, 2003, 279–301. · Zbl 1027.65001 · doi:10.1016/S0024-3795(02)00686-9
[5] Carlson, D., What are Schur complements, anyway? Linear Algebra Appl., 74, 1986, 257–275. · Zbl 0595.15006 · doi:10.1016/0024-3795(86)90127-8
[6] Choi, M. D. and Davis, C., The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80, 1974, 317–321. · Zbl 0276.47001 · doi:10.1090/S0002-9904-1974-13481-6
[7] Choi, M. D. and Li, C. K., The ultimate estimate of the upper norm bound for the summation of operators, J. Funct. Anal., 232, 2006, 455–476. · Zbl 1116.47011 · doi:10.1016/j.jfa.2005.07.001
[8] Corach, G., Maestripieri, A. and Stojanoff, D., Oblique projections and abstract splines, J. Approx. Theory, 117, 2002, 189–206. · Zbl 1055.47016 · doi:10.1006/jath.2002.3696
[9] Corach, G., Maestripieri, A. and Stojanoff, D., Oblique projections and Schur complements, Acta Sci. Math. (Szeged), 67, 2001, 439–459. · Zbl 0980.47021
[10] Corach, G., Maestripieri, A. and Stojanoff, D., Generalized Schur complements and oblique projections, Linear Algebra Appl., 341, 2002, 259–272. · Zbl 1015.47014 · doi:10.1016/S0024-3795(01)00384-6
[11] Crabtree, D. E. and Haynsworth, E. V., An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc., 22, 1969, 364–366. · Zbl 0186.34003 · doi:10.1090/S0002-9939-1969-0255573-1
[12] Fang, X. C., The represention of topological groupoid, Acta Math. Sinica, 39, 1996, 6–15.
[13] Fang, X. C., The induced representation of C*-groupoid dynamical system, Chin. Ann. Math., 17B(1), 1996, 103–114. · Zbl 0841.46049
[14] Fang, X. C., The realization of multiplier Hilbert bimodule on bidule space and Tietze extension theorem, Chin. Ann. Math., 21B(3), 2000, 375–380. · Zbl 0960.46037 · doi:10.1142/S025295990000039X
[15] Fang, X. C., Yu, J. and Yao, H., Solutions to operator equations on Hilbert C*-modules, Linear Algebra Appl., 431, 2009, 2142–2153. · Zbl 1175.47014 · doi:10.1016/j.laa.2009.07.009
[16] Giribet, J. I., Maestripieri, A. and Peria, F. M., Shorting selfadjoint operators in Hilbert spaces, Linear Algebra Appl., 428, 2008, 1899–1911. · Zbl 1139.47015
[17] Hassi, S. and Nordstrom, K., On projections in a space with an indefinite metric, Linear Algebra Appl., 208–209, 1994, 401–417. · Zbl 0803.46022 · doi:10.1016/0024-3795(94)90452-9
[18] Haynsworth, E., Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl., 1, 1968, 73–81. · Zbl 0155.06304 · doi:10.1016/0024-3795(68)90050-5
[19] Jensen, K. K. and Thomsen, K., Elements of KK-theory, Birkhauser, Boston, 1991. · Zbl 1155.19300
[20] Karaev, M. T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238, 2006, 181–192. · Zbl 1102.47018 · doi:10.1016/j.jfa.2006.04.030
[21] Khatri, C. G. and Mitra, S. K., Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31, 1976, 579–585. · Zbl 0359.65033 · doi:10.1137/0131050
[22] Krein, M. G., The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N. S.), 20(62), 1947, 431–495. · Zbl 0029.14103
[23] Lance, E. C., Hilbert C*-modules: A toolkit for operator algebraists, Cambridge University Press, Cambridge, 1995. · Zbl 0822.46080
[24] Lauzon, M. M. and Treil, S., Common complements of two subspaces of a Hilbert space, J. Funct. Anal., 212, 2004, 500–512. · Zbl 1065.46018 · doi:10.1016/S0022-1236(03)00253-2
[25] Magajna, M., Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc., 125, 1997, 849–852. · Zbl 0865.46038 · doi:10.1090/S0002-9939-97-03551-X
[26] Ostrowski, A., A new proof of Haynsworths quotient formula for Schur complements, Linear Algebra Appl., 4, 1971, 389–392. · Zbl 0224.15003 · doi:10.1016/0024-3795(71)90010-3
[27] Pasternak-Winiarski, Z., On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math., 128, 1998, 1–17. · Zbl 0910.46013
[28] Pekarev, E. L., Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged), 56, 1992, 147–163. · Zbl 0787.47015
[29] Ptak, V., Extremal operators and oblique projections, Casopis pro pestovani Matematiky, 110, 1985, 343–350.
[30] Schweizer, J., A description of Hilbert C*-modules in which all closed submodules are orthogonally closed, Proc. Amer. Math. Soc., 127, 1999, 2123–2125. · Zbl 0919.46042 · doi:10.1090/S0002-9939-99-05219-3
[31] Wegge-Olsen, N. E., K-Theory and C*-Algebras: A Friendly Approach, Oxford University Press, Oxford, 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.